Creep-Fatigue Life Prediction of 316H Stainless Steel through Physics-Informed Data-Driven Models

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lianyong Xu, Haiting Jia, Lei Zhao, Yongdian Han, Kangda Hao, Wenjing Ren
{"title":"Creep-Fatigue Life Prediction of 316H Stainless Steel through Physics-Informed Data-Driven Models","authors":"Lianyong Xu,&nbsp;Haiting Jia,&nbsp;Lei Zhao,&nbsp;Yongdian Han,&nbsp;Kangda Hao,&nbsp;Wenjing Ren","doi":"10.1002/adem.202401889","DOIUrl":null,"url":null,"abstract":"<p>316H stainless steel is a critical material for fourth-generation nuclear reactors, yet it is prone to creep-fatigue failure under high-temperature and high-pressure conditions. This study evaluates physics-driven models (including time fraction model, ductile exhaustion model, modified strain energy density exhaustion model, and plastic strain energy model) and data-driven models (including support vector regression, random forests, generalized regression neural networks, and backpropagation neural networks) for predicting the creep-fatigue life of 316H base metal and welded joints. On the basis of data-driven models, physical information from the creep-fatigue damage is further integrated to embed the physics-informed input features and the physics-informed loss function, thereby constructing physics-informed data-driven models  to predict creep-fatigue life. Results demonstrate that physics-informed data-driven models significantly outperform conventional approaches, with the physics-informed generalized regression neural network achieving the highest accuracy (<i>R</i><sup>2</sup> = 0.9277). This work provides a robust framework for enhancing life prediction in high-temperature structural applications.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401889","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

316H stainless steel is a critical material for fourth-generation nuclear reactors, yet it is prone to creep-fatigue failure under high-temperature and high-pressure conditions. This study evaluates physics-driven models (including time fraction model, ductile exhaustion model, modified strain energy density exhaustion model, and plastic strain energy model) and data-driven models (including support vector regression, random forests, generalized regression neural networks, and backpropagation neural networks) for predicting the creep-fatigue life of 316H base metal and welded joints. On the basis of data-driven models, physical information from the creep-fatigue damage is further integrated to embed the physics-informed input features and the physics-informed loss function, thereby constructing physics-informed data-driven models  to predict creep-fatigue life. Results demonstrate that physics-informed data-driven models significantly outperform conventional approaches, with the physics-informed generalized regression neural network achieving the highest accuracy (R2 = 0.9277). This work provides a robust framework for enhancing life prediction in high-temperature structural applications.

316H 不锈钢是第四代核反应堆的关键材料,但在高温高压条件下容易发生蠕变疲劳失效。本研究评估了预测 316H 母材和焊接接头蠕变疲劳寿命的物理驱动模型(包括时间分数模型、韧性耗尽模型、修正应变能密度耗尽模型和塑性应变能模型)和数据驱动模型(包括支持向量回归、随机森林、广义回归神经网络和反向传播神经网络)。在数据驱动模型的基础上,进一步整合蠕变疲劳损伤的物理信息,嵌入物理信息输入特征和物理信息损失函数,从而构建物理信息数据驱动模型来预测蠕变疲劳寿命。结果表明,物理信息数据驱动模型明显优于传统方法,其中物理信息广义回归神经网络的准确度最高(R2 = 0.9277)。这项工作为提高高温结构应用中的寿命预测提供了一个稳健的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信