Numerical Simulations of Heat and Mass Transfer Enhancement Over a Rotating Cone

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-12-21 DOI:10.1002/htj.23251
Saquib Ul Zaman, Sameed Ahmad
{"title":"Numerical Simulations of Heat and Mass Transfer Enhancement Over a Rotating Cone","authors":"Saquib Ul Zaman,&nbsp;Sameed Ahmad","doi":"10.1002/htj.23251","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this work, we investigate the combined effects of heat and mass exchange on the time-dependent convectional flow of a rheological nanofluid across a rotating cone. A numerical arrangement of nonlinear differential equations is obtained for spinning cones with separator temperature boundary conditions by similarity transformation. The effect of different parameters on the velocity, temperature, and concentration profiles are discussed. Tangential velocity is observed to decrease with an increase in the Deborah number, whereas it increases with increasing values of the angular velocity ratio, relaxation to the retardation time ratio, and buoyancy parameter. Expansion in the Prandtl number is noted to decrease the boundary-layer temperature and thickness. Nusselt number and skin disunion observations are also considered. It is discovered that the Nusselt number expands by expanding the lightness parameter and Prandtl number, whereas it increases by decreasing the Deborah number. We also noticed that the Sherwood number falls incrementally in Deborah and Prandtl numbers, but it upsurges with an increase in the buoyancy parameter. The effect of parameters on temperature is graphically displayed, and the face shear stress tabulated values and heat shift rate are included in tables.</p>\n </div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 3","pages":"1832-1840"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we investigate the combined effects of heat and mass exchange on the time-dependent convectional flow of a rheological nanofluid across a rotating cone. A numerical arrangement of nonlinear differential equations is obtained for spinning cones with separator temperature boundary conditions by similarity transformation. The effect of different parameters on the velocity, temperature, and concentration profiles are discussed. Tangential velocity is observed to decrease with an increase in the Deborah number, whereas it increases with increasing values of the angular velocity ratio, relaxation to the retardation time ratio, and buoyancy parameter. Expansion in the Prandtl number is noted to decrease the boundary-layer temperature and thickness. Nusselt number and skin disunion observations are also considered. It is discovered that the Nusselt number expands by expanding the lightness parameter and Prandtl number, whereas it increases by decreasing the Deborah number. We also noticed that the Sherwood number falls incrementally in Deborah and Prandtl numbers, but it upsurges with an increase in the buoyancy parameter. The effect of parameters on temperature is graphically displayed, and the face shear stress tabulated values and heat shift rate are included in tables.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信