Decreased Air-Sea CO 2 ${\mathbf{\text{CO}}}_{\mathbf{2}}$ Flux During the Persistent Marine Heatwaves in the Yellow Sea and East China Sea

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY
Guozhi Ren, Rong Na, Shaoqing Zhang, Zengrui Rong, Wentao Ma, Fei Chai, Yongjun Tian, Yang Gao, Lv Lu
{"title":"Decreased Air-Sea \n \n \n \n CO\n 2\n \n \n ${\\mathbf{\\text{CO}}}_{\\mathbf{2}}$\n Flux During the Persistent Marine Heatwaves in the Yellow Sea and East China Sea","authors":"Guozhi Ren,&nbsp;Rong Na,&nbsp;Shaoqing Zhang,&nbsp;Zengrui Rong,&nbsp;Wentao Ma,&nbsp;Fei Chai,&nbsp;Yongjun Tian,&nbsp;Yang Gao,&nbsp;Lv Lu","doi":"10.1029/2024JC021525","DOIUrl":null,"url":null,"abstract":"<p>Marine heatwaves (MHWs) exert a significant influence on marine ecosystem, especially in marginal seas where carbonate processes are intricately linked to temperature variations. However, how MHWs affect the carbonate processes in marginal seas, such as the Yellow Sea (YS) and East China Sea (ECS), remains unclear. Here, we employ a physical-biogeochemical model to simulate marine ecosystem, aiming to systematically quantify impacts of persistent MHWs (PMHWs) on air-sea <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> flux (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>FCO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{FCO}}_{2}$</annotation>\n </semantics></math>) anomaly in YS and ECS. Results reveal that due to reduced wind speed and elevated temperature during PMHWs, ocean <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> reservoir experiences dramatic decrease. In summer when the ocean releases CO<sub>2</sub> to the atmosphere, suppressed ocean CO<sub>2</sub> outgassing induced by decreased wind speed counteracts elevated ocean CO<sub>2</sub> outgassing resulted from high temperature. In winter, both wind speed and temperature factors suppress ocean CO<sub>2</sub> absorption from the atmosphere to the ocean. In addition, the spatial pattern of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>FCO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{FCO}}_{2}$</annotation>\n </semantics></math> is dominated by partial pressure of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> in the surface water (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>pCO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{pCO}}_{2}$</annotation>\n </semantics></math>). While thermal effects have a contribution of 61% and 33% in YS and ECS to positive <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>pCO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{pCO}}_{2}$</annotation>\n </semantics></math> anomaly, non-thermal effects primarily driven by alkalinity anomaly play a more vital role in amplifying <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>pCO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{pCO}}_{2}$</annotation>\n </semantics></math> anomaly (61% and 90% respectively). Furthermore, horizontal advection emerges as a dominant ocean process in modulating <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>pCO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{pCO}}_{2}$</annotation>\n </semantics></math> variations in YS and ECS, with the contribution of 72 ± 17% and 75 ± 60% respectively. These findings underscore the importance of understanding the physical mechanisms behind PMHWs in analyzing its ecological impacts within coastal ocean environments.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 4","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021525","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Marine heatwaves (MHWs) exert a significant influence on marine ecosystem, especially in marginal seas where carbonate processes are intricately linked to temperature variations. However, how MHWs affect the carbonate processes in marginal seas, such as the Yellow Sea (YS) and East China Sea (ECS), remains unclear. Here, we employ a physical-biogeochemical model to simulate marine ecosystem, aiming to systematically quantify impacts of persistent MHWs (PMHWs) on air-sea CO 2 ${\text{CO}}_{2}$ flux ( FCO 2 ${\text{FCO}}_{2}$ ) anomaly in YS and ECS. Results reveal that due to reduced wind speed and elevated temperature during PMHWs, ocean CO 2 ${\text{CO}}_{2}$ reservoir experiences dramatic decrease. In summer when the ocean releases CO2 to the atmosphere, suppressed ocean CO2 outgassing induced by decreased wind speed counteracts elevated ocean CO2 outgassing resulted from high temperature. In winter, both wind speed and temperature factors suppress ocean CO2 absorption from the atmosphere to the ocean. In addition, the spatial pattern of FCO 2 ${\text{FCO}}_{2}$ is dominated by partial pressure of CO 2 ${\text{CO}}_{2}$ in the surface water ( pCO 2 ${\text{pCO}}_{2}$ ). While thermal effects have a contribution of 61% and 33% in YS and ECS to positive pCO 2 ${\text{pCO}}_{2}$ anomaly, non-thermal effects primarily driven by alkalinity anomaly play a more vital role in amplifying pCO 2 ${\text{pCO}}_{2}$ anomaly (61% and 90% respectively). Furthermore, horizontal advection emerges as a dominant ocean process in modulating pCO 2 ${\text{pCO}}_{2}$ variations in YS and ECS, with the contribution of 72 ± 17% and 75 ± 60% respectively. These findings underscore the importance of understanding the physical mechanisms behind PMHWs in analyzing its ecological impacts within coastal ocean environments.

黄海和东海持续性海洋热浪期间海气 CO 2 ${mathbf{text{CO}}}_{mathbf{2}}$ 通量的减少
海洋热浪(MHWs)对海洋生态系统产生重大影响,特别是在碳酸盐过程与温度变化复杂相关的边缘海域。然而,在黄海(YS)和东中国海(ECS)等边缘海域,强震如何影响碳酸盐过程仍不清楚。本文采用物理-生物地球化学模型模拟海洋生态系统,旨在系统量化持续强热带气旋(PMHWs)对海气CO 2 ${\text{CO}}_{2}$通量(FCO 2 ${\text{FCO}}_{2}$)异常的影响。结果表明,PMHWs期间,由于风速降低和温度升高,海洋CO 2 ${\text{CO}}_{2}$水库急剧减少。在夏季,当海洋向大气释放CO2时,风速降低导致的海洋CO2释放量减少抵消了高温导致的海洋CO2释放量增加。在冬季,风速和温度因素都抑制了大气对海洋的CO2吸收。此外,FCO 2 ${\text{FCO}}_{2}$的空间格局受CO 2 ${\text{CO}}_{2}$的分压支配2 ${\text{pCO}}_{2}$)。而热效应对正pCO 2 ${\text{pCO}}_{2}$异常的贡献分别为61%和33%。以碱度异常为主的非热效应对pco2 ${\text{pCO}}_{2}$异常的放大作用更为重要(分别为61%和90%)。此外,水平平流作为主要的海洋过程,对YS和ECS的pco_2 ${\text{pCO}}_{2}$变化的贡献率分别为72±17%和75±60%。这些发现强调了了解PMHWs背后的物理机制对分析其在沿海海洋环境中的生态影响的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信