An Optimised Adaptive Integral Sliding Mode Control Approach for Multi-Area Power Systems: Enhancing LFC Robustness and Stability With RES Integration and Time-Delay Mitigation

IF 1.6 Q4 ENERGY & FUELS
Tushar Kanti Roy, Sajeeb Saha, Amanullah Maung Than Oo
{"title":"An Optimised Adaptive Integral Sliding Mode Control Approach for Multi-Area Power Systems: Enhancing LFC Robustness and Stability With RES Integration and Time-Delay Mitigation","authors":"Tushar Kanti Roy,&nbsp;Sajeeb Saha,&nbsp;Amanullah Maung Than Oo","doi":"10.1049/esi2.70006","DOIUrl":null,"url":null,"abstract":"<p>Frequency stability is vital to power system operation, especially in interconnected power systems (IPS) and smart grids where renewable energy sources and load fluctuations introduce unpredictability. This variability and time delay from decentralised control configurations can impair load frequency control (LFC) and compromise system stability. This study proposes a robust adaptive integral terminal sliding mode controller (RAITSMC) for LFC to address these challenges. The controller mitigates destabilising effects from time delays, parametric uncertainties and nonlinear disturbances. A delay-dependent sliding surface is developed to enhance the system's response to tie-line power and frequency deviations. Perturbations are estimated using an adaptation law, and a decentralised robust control law ensures the system's trajectory remains on the sliding surface with minimal control efforts. The controller's stability is validated via the Lyapunov theorem, and its parameters are optimised using the arithmetic optimisation algorithm. Simulations on the IEEE 10-generator New England 39-bus power system demonstrate significant improvements, including reduced frequency overshoot (48.3%), undershoot (45.7%) and settling time (37.2%), along with enhanced robustness under <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n </mrow>\n <annotation> $\\pm $</annotation>\n </semantics></math>50% parametric variations. Comparative analyses reveal superior performance across error-based indices, showcasing RAITSMC's potential to ensure a reliable and stable power system operation.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"7 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.70006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.70006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Frequency stability is vital to power system operation, especially in interconnected power systems (IPS) and smart grids where renewable energy sources and load fluctuations introduce unpredictability. This variability and time delay from decentralised control configurations can impair load frequency control (LFC) and compromise system stability. This study proposes a robust adaptive integral terminal sliding mode controller (RAITSMC) for LFC to address these challenges. The controller mitigates destabilising effects from time delays, parametric uncertainties and nonlinear disturbances. A delay-dependent sliding surface is developed to enhance the system's response to tie-line power and frequency deviations. Perturbations are estimated using an adaptation law, and a decentralised robust control law ensures the system's trajectory remains on the sliding surface with minimal control efforts. The controller's stability is validated via the Lyapunov theorem, and its parameters are optimised using the arithmetic optimisation algorithm. Simulations on the IEEE 10-generator New England 39-bus power system demonstrate significant improvements, including reduced frequency overshoot (48.3%), undershoot (45.7%) and settling time (37.2%), along with enhanced robustness under ± $\pm $ 50% parametric variations. Comparative analyses reveal superior performance across error-based indices, showcasing RAITSMC's potential to ensure a reliable and stable power system operation.

Abstract Image

一种优化的多区域电力系统自适应积分滑模控制方法:利用RES集成和时滞缓解增强LFC鲁棒性和稳定性
频率稳定性对电力系统运行至关重要,特别是在可再生能源和负荷波动引入不可预测性的互联电力系统(IPS)和智能电网中。分散控制配置的这种可变性和时间延迟会损害负载频率控制(LFC)并损害系统稳定性。本研究提出一种鲁棒自适应积分终端滑模控制器(RAITSMC)用于LFC来解决这些挑战。控制器减轻了时滞、参数不确定性和非线性干扰的不稳定影响。为了提高系统对联络线功率和频率偏差的响应,提出了一种与延迟相关的滑动面。使用自适应律估计扰动,分散鲁棒控制律确保系统轨迹保持在滑动面上,控制努力最小。通过李雅普诺夫定理验证了控制器的稳定性,并采用算术优化算法对控制器参数进行了优化。在IEEE 10发电机新英格兰39母线电力系统上的仿真表明,该方法有显著的改进,包括降低频率超调(48.3%)、过调(45.7%)和稳定时间(37.2%),以及在±$\pm $ 50%参数变化下增强的鲁棒性。对比分析显示,在基于误差的各项指标中,RAITSMC表现优异,展示了其在确保电力系统可靠稳定运行方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Energy Systems Integration
IET Energy Systems Integration Engineering-Engineering (miscellaneous)
CiteScore
5.90
自引率
8.30%
发文量
29
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信