Water Transport and Enzyme Recycling in Tenebrio molitor Midgut: Insights From Transcriptomics, Proteomics, and In Vivo Inhibition Assays

IF 1.5 4区 农林科学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ignacio G. Barroso, Clelia Ferreira, Walter R. Terra
{"title":"Water Transport and Enzyme Recycling in Tenebrio molitor Midgut: Insights From Transcriptomics, Proteomics, and In Vivo Inhibition Assays","authors":"Ignacio G. Barroso,&nbsp;Clelia Ferreira,&nbsp;Walter R. Terra","doi":"10.1002/arch.70059","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The low excretory rates of secreted digestive enzymes, such as trypsins, in insect species with peritrophic membranes led to the hypothesis of ectoperitrophic countercurrent water fluxes causing enzyme recycling. The midgut water flux model of <i>Tenebrio molitor</i> (<i>T. molitor</i>) is revisited and supported by in vivo experiments. Sequences from proteins putatively involved in water transport were retrieved from the <i>T. molitor</i> transcriptome by Blast and analyzed using bioinformatics tools. Gene expression of selected proteins was determined in three midgut sections (anterior, AM; middle, MM; posterior, PM) by RNA-seq, and transporter proteins were verified in microvillar-membrane-enriched midgut samples by proteomics. Genes encoding three cation chloride cotransporters (CCC) and four aquaporins were expressed in the midgut. <i>TmNaCCC2</i>, <i>TmPrip</i>, and <i>TmEglp1</i> showed higher expression in the front half, while <i>TmKCC</i>, <i>TmNKCC1, TmDrip</i>, and <i>TmEglp2</i> were more highly expressed in the back half. However, only <i>TmNaCCC2</i> was found by proteomics. Midgut water fluxes were quantified by feeding <i>T. molitor</i> larvae with nonabsorbable dye and measuring its concentration along the midgut. The results suggest water absorption in AM and secretion in MM and PM, potentially caused by <i>TmNaCCC2</i> and <i>TmPrip</i> in AM, and <i>TmKCC</i> and <i>TmDrip</i> in PM, whereas MM serves as a transition region. Larvae fed on furosemide, an NKCC and KCC inhibitor, showed altered midgut water fluxes, resulting in higher trypsin excretion into the hindgut, thus reinforcing the hypothesis of a countercurrent water flux generated by CCCs powering enzyme recycling in insect midguts.</p></div>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"118 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Insect Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arch.70059","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The low excretory rates of secreted digestive enzymes, such as trypsins, in insect species with peritrophic membranes led to the hypothesis of ectoperitrophic countercurrent water fluxes causing enzyme recycling. The midgut water flux model of Tenebrio molitor (T. molitor) is revisited and supported by in vivo experiments. Sequences from proteins putatively involved in water transport were retrieved from the T. molitor transcriptome by Blast and analyzed using bioinformatics tools. Gene expression of selected proteins was determined in three midgut sections (anterior, AM; middle, MM; posterior, PM) by RNA-seq, and transporter proteins were verified in microvillar-membrane-enriched midgut samples by proteomics. Genes encoding three cation chloride cotransporters (CCC) and four aquaporins were expressed in the midgut. TmNaCCC2, TmPrip, and TmEglp1 showed higher expression in the front half, while TmKCC, TmNKCC1, TmDrip, and TmEglp2 were more highly expressed in the back half. However, only TmNaCCC2 was found by proteomics. Midgut water fluxes were quantified by feeding T. molitor larvae with nonabsorbable dye and measuring its concentration along the midgut. The results suggest water absorption in AM and secretion in MM and PM, potentially caused by TmNaCCC2 and TmPrip in AM, and TmKCC and TmDrip in PM, whereas MM serves as a transition region. Larvae fed on furosemide, an NKCC and KCC inhibitor, showed altered midgut water fluxes, resulting in higher trypsin excretion into the hindgut, thus reinforcing the hypothesis of a countercurrent water flux generated by CCCs powering enzyme recycling in insect midguts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
4.50%
发文量
115
审稿时长
12 months
期刊介绍: Archives of Insect Biochemistry and Physiology is an international journal that publishes articles in English that are of interest to insect biochemists and physiologists. Generally these articles will be in, or related to, one of the following subject areas: Behavior, Bioinformatics, Carbohydrates, Cell Line Development, Cell Signalling, Development, Drug Discovery, Endocrinology, Enzymes, Lipids, Molecular Biology, Neurobiology, Nucleic Acids, Nutrition, Peptides, Pharmacology, Pollinators, Proteins, Toxicology. Archives will publish only original articles. Articles that are confirmatory in nature or deal with analytical methods previously described will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信