Exploring the Dynamic Transition from Aging to Additive Manufacturing: Investigating Microstructural Evolution of Metastable γ″ Precipitates in Inconel 625 through Coupled Phase-Field Simulation

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Roya Darabi, Ana Reis, Jose Cesar de Sa
{"title":"Exploring the Dynamic Transition from Aging to Additive Manufacturing: Investigating Microstructural Evolution of Metastable γ″ Precipitates in Inconel 625 through Coupled Phase-Field Simulation","authors":"Roya Darabi,&nbsp;Ana Reis,&nbsp;Jose Cesar de Sa","doi":"10.1002/adem.202402374","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the microstructural evolution during the coprecipitation of metastable γ″ (D022-Ni3Nb) particles within a supersaturated γ matrix in commercial IN625 Ni-based superalloy. The research aims to comprehensively understand the morphological evolution and fraction distribution of precipitate phases to enhance material strength and guide the design of additive manufacturing processes. A sophisticated coupled computational phase-field model is developed. The novel phase-field model within the open-source multiphysics object oriented simulation environment finite element framework enables the efficient construction of coupled phase-field mechanics models for multiphase systems. The quantitative precipitation model incorporates essential inputs, such as ab initio calculations, experimental data, precipitate–matrix orientation relationships, interfacial energy, interdiffusivities, and a tailored thermodynamic database. Simulation results reveal the intricate interplay of alloy composition, lattice misfit, external stress, temperature, and time, influencing the dynamic microstructure evolution during additive manufacturing. The findings highlight the significant influence of thermal cycles and process parameters on γ″ precipitate formation, directly impacting material properties and volumetric fraction. Leveraging experimental-driven formulations for coherent strength optimization aims to maximize γ″ precipitates while minimizing postprocessing costs.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402374","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the microstructural evolution during the coprecipitation of metastable γ″ (D022-Ni3Nb) particles within a supersaturated γ matrix in commercial IN625 Ni-based superalloy. The research aims to comprehensively understand the morphological evolution and fraction distribution of precipitate phases to enhance material strength and guide the design of additive manufacturing processes. A sophisticated coupled computational phase-field model is developed. The novel phase-field model within the open-source multiphysics object oriented simulation environment finite element framework enables the efficient construction of coupled phase-field mechanics models for multiphase systems. The quantitative precipitation model incorporates essential inputs, such as ab initio calculations, experimental data, precipitate–matrix orientation relationships, interfacial energy, interdiffusivities, and a tailored thermodynamic database. Simulation results reveal the intricate interplay of alloy composition, lattice misfit, external stress, temperature, and time, influencing the dynamic microstructure evolution during additive manufacturing. The findings highlight the significant influence of thermal cycles and process parameters on γ″ precipitate formation, directly impacting material properties and volumetric fraction. Leveraging experimental-driven formulations for coherent strength optimization aims to maximize γ″ precipitates while minimizing postprocessing costs.

探索从时效到增材制造的动态转变:通过耦合相场模拟研究Inconel 625亚稳γ″相的微观组织演变
本文研究了工业IN625镍基高温合金中亚稳γ″(D022-Ni3Nb)颗粒在过饱和γ基体内共析出过程中的显微组织演变。研究旨在全面了解析出相的形态演变和分数分布,以提高材料强度,指导增材制造工艺的设计。建立了一个复杂的相场耦合计算模型。基于开源多物理场面向对象仿真环境有限元框架的相场模型实现了多相系统相场耦合力学模型的高效构建。定量沉淀模型结合了基本的输入,如从头计算、实验数据、沉淀-基质取向关系、界面能、扩散系数和定制的热力学数据库。模拟结果揭示了合金成分、晶格失配、外部应力、温度和时间等因素对增材制造过程中动态组织演变的复杂影响。研究结果强调了热循环和工艺参数对γ″沉淀形成的显著影响,直接影响材料性能和体积分数。利用实验驱动的配方进行相干强度优化,旨在最大化γ″沉淀,同时最大限度地降低后处理成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信