Influence of Specific Ball-Milling Energy on Mechanical and Corrosion Properties of Zn–0.2 Graphene Nanoplatelet Composites

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Humayun Kabir, Khurram Munir, Cuie Wen, Yuncang Li
{"title":"Influence of Specific Ball-Milling Energy on Mechanical and Corrosion Properties of Zn–0.2 Graphene Nanoplatelet Composites","authors":"Humayun Kabir,&nbsp;Khurram Munir,&nbsp;Cuie Wen,&nbsp;Yuncang Li","doi":"10.1002/adem.202402196","DOIUrl":null,"url":null,"abstract":"<p>The specific amount of ball-milling energy (SBME) plays a significant role in achieving a homogenous dispersion of graphene nanoplatelets (GNPs) in metal matrix composites (MMCs). The dispersion of GNPs in the metal matrices, induced by SBME, can be adjusted to improve the mechanical and corrosion properties of the MMCs. Herein, high-energy ball milling is utilized to disperse 0.2 wt% of GNPs into zinc (Zn) powders using different SBMEs. Ball-milled powder mixtures (BMPMs) obtained at different SBMEs are cold-compacted at 500 MPa and sintered at 420 °C. The morphology of the BMPMs and the microstructure of the Zn–0.2GNP composites (Zn-based MMCs [ZMCs]) are evaluated utilizing X-ray diffraction and scanning electron microscopy. Compression and electrochemical testing are performed on ZMCs to analyze the mechanical and corrosion properties. Results indicated that the GNPs are uniformly dispersed in the Zn powders at the optimal SBME of 32.82 kJ g<sup>−1</sup>. The microhardness, compressive yield strength, ultimate compressive strength, compressive strain, and reduced elastic modulus of the ZMC fabricated at 32.82 kJ g<sup>−1</sup> SBME are 68.7 HV, 123, 247 MPa, 22.9%, and 89.04 GPa, respectively, improvements of 66%, ≈160, ≈201, ≈51, and ≈26% compared to the reference sample ball milled at 0.91 kJ g<sup>−1</sup> SBME. The corrosion rate of the ZMCs declined with increasing SBMEs.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202402196","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402196","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The specific amount of ball-milling energy (SBME) plays a significant role in achieving a homogenous dispersion of graphene nanoplatelets (GNPs) in metal matrix composites (MMCs). The dispersion of GNPs in the metal matrices, induced by SBME, can be adjusted to improve the mechanical and corrosion properties of the MMCs. Herein, high-energy ball milling is utilized to disperse 0.2 wt% of GNPs into zinc (Zn) powders using different SBMEs. Ball-milled powder mixtures (BMPMs) obtained at different SBMEs are cold-compacted at 500 MPa and sintered at 420 °C. The morphology of the BMPMs and the microstructure of the Zn–0.2GNP composites (Zn-based MMCs [ZMCs]) are evaluated utilizing X-ray diffraction and scanning electron microscopy. Compression and electrochemical testing are performed on ZMCs to analyze the mechanical and corrosion properties. Results indicated that the GNPs are uniformly dispersed in the Zn powders at the optimal SBME of 32.82 kJ g−1. The microhardness, compressive yield strength, ultimate compressive strength, compressive strain, and reduced elastic modulus of the ZMC fabricated at 32.82 kJ g−1 SBME are 68.7 HV, 123, 247 MPa, 22.9%, and 89.04 GPa, respectively, improvements of 66%, ≈160, ≈201, ≈51, and ≈26% compared to the reference sample ball milled at 0.91 kJ g−1 SBME. The corrosion rate of the ZMCs declined with increasing SBMEs.

Abstract Image

特定球磨能量对 Zn-0.2 石墨烯纳米片复合材料机械和腐蚀特性的影响
在金属基复合材料(MMC)中实现石墨烯纳米片(GNPs)的均匀分散时,特定的球磨能量(SBME)起着重要作用。通过调整 SBME 诱导的 GNPs 在金属基材中的分散度,可以改善 MMC 的机械性能和腐蚀性能。本文利用高能球磨法,使用不同的 SBME 将 0.2 wt% 的 GNPs 分散到锌(Zn)粉末中。在不同的 SBME 条件下获得的球磨粉末混合物(BMPMs)在 500 MPa 下冷压并在 420 °C 下烧结。利用 X 射线衍射和扫描电子显微镜评估了 BMPMs 的形态和 Zn-0.2GNP 复合材料(Zn 基 MMCs [ZMCs])的微观结构。还对 ZMCs 进行了压缩和电化学测试,以分析其机械和腐蚀特性。结果表明,在 32.82 kJ g-1 的最佳 SBME 下,GNPs 在锌粉中均匀分散。与用 0.91 kJ g-1 SBME 球磨的参考样品相比,用 32.82 kJ g-1 SBME 制备的 ZMC 的显微硬度、抗压屈服强度、极限抗压强度、抗压应变和还原弹性模量分别为 68.7 HV、123、247 MPa、22.9% 和 89.04 GPa,分别提高了 66%、≈160、≈201、≈51 和≈26%。随着 SBME 的增加,ZMC 的腐蚀率也在下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信