Electrochemical Synthesis and Morphological Analysis of Titanium Dioxide Nanostructures: Nanotubes, Nanograss, and Nanolace

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Younghwan Kim, Swomitra Kumar Mohanty
{"title":"Electrochemical Synthesis and Morphological Analysis of Titanium Dioxide Nanostructures: Nanotubes, Nanograss, and Nanolace","authors":"Younghwan Kim,&nbsp;Swomitra Kumar Mohanty","doi":"10.1002/adem.202402227","DOIUrl":null,"url":null,"abstract":"<p>\nTitanium dioxide (TiO<sub>2</sub>) nanostructures exhibit diverse morphologies depending on synthesis conditions. This study investigates the effects of varying anodization parameters on TiO<sub>2</sub> nanotubes, nanograss, and nanolace formation. Field-emission scanning electron microscopy is employed to analyze these nanostructures’ morphology and growth rates. The structural characteristics of the resulting nanostructures are precisely controlled by adjusting temperature, water content, duration, and applied potential during the anodization process. Nanotube length and diameter are influenced by ethylene glycol (EG) concentration, applied voltage, and temperature. The quantity of nanograss is determined by the anodization temperature. Nanolace formation is affected by hydrofluoric acid (HF) pretreatment of titanium foil. The results demonstrate that higher EG concentrations and applied potentials produce longer nanotubes, whereas lower EG concentrations with higher potentials result in larger nanotube diameters. Temperature variations control the amount of nanograss. HF pretreatment facilitates the formation of a hexagonal nanolace network on the surface. By tailoring synthesis conditions, this study provides a method for controlling the morphology of TiO<sub>2</sub> nanostructures. These findings have implications for optimizing TiO<sub>2</sub> nanostructures in sensors, photocatalysis, and other areas of nanotechnology, where specific structural properties are crucial for enhanced performance.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202402227","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402227","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Titanium dioxide (TiO2) nanostructures exhibit diverse morphologies depending on synthesis conditions. This study investigates the effects of varying anodization parameters on TiO2 nanotubes, nanograss, and nanolace formation. Field-emission scanning electron microscopy is employed to analyze these nanostructures’ morphology and growth rates. The structural characteristics of the resulting nanostructures are precisely controlled by adjusting temperature, water content, duration, and applied potential during the anodization process. Nanotube length and diameter are influenced by ethylene glycol (EG) concentration, applied voltage, and temperature. The quantity of nanograss is determined by the anodization temperature. Nanolace formation is affected by hydrofluoric acid (HF) pretreatment of titanium foil. The results demonstrate that higher EG concentrations and applied potentials produce longer nanotubes, whereas lower EG concentrations with higher potentials result in larger nanotube diameters. Temperature variations control the amount of nanograss. HF pretreatment facilitates the formation of a hexagonal nanolace network on the surface. By tailoring synthesis conditions, this study provides a method for controlling the morphology of TiO2 nanostructures. These findings have implications for optimizing TiO2 nanostructures in sensors, photocatalysis, and other areas of nanotechnology, where specific structural properties are crucial for enhanced performance.

Abstract Image

二氧化钛纳米结构的电化学合成和形态分析:纳米管、纳米草和纳米花边
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信