Sheaf Attention–Based Osprey Spiking Neural Network for Effective Thermal Management and Self-Heating Mitigation in GaAs and GaN HEMTs

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2025-01-30 DOI:10.1002/htj.23294
Preethi Elizabeth Iype, V. Suresh Babu, Geenu Paul
{"title":"Sheaf Attention–Based Osprey Spiking Neural Network for Effective Thermal Management and Self-Heating Mitigation in GaAs and GaN HEMTs","authors":"Preethi Elizabeth Iype,&nbsp;V. Suresh Babu,&nbsp;Geenu Paul","doi":"10.1002/htj.23294","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This research introduces the sheaf attention–based osprey spiking neural network (SA-OSNN) to optimize the thermal performance of GaAs and GaN high electron mobility transistors (HEMTs), which are critical for radio frequency and microwave circuits due to their excellent electron characteristics. By integrating modified osprey optimization, the SA-OSNN approach enhances thermal management by dynamically adjusting model parameters in response to changing environmental conditions, ensuring efficient and effective thermal control. This method is used as an optimization tool that works in conjunction with established thermal management solutions, such as GaN, SiC, and AlN materials, which provide the physical properties necessary for effective heat dissipation. This analysis covers a temperature between −100°C and 200°C, examining frequencies up to 50 GHz validating the accuracy and reliability for GaAs and GaN HEMT thermal optimization. Overall, this research achieves a minimum error of 5.97834e−01 and 6.01251e−05. Also, SA-OSNN achieves an accuracy of 97% with better performances than existing methods.</p>\n </div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 3","pages":"2377-2392"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This research introduces the sheaf attention–based osprey spiking neural network (SA-OSNN) to optimize the thermal performance of GaAs and GaN high electron mobility transistors (HEMTs), which are critical for radio frequency and microwave circuits due to their excellent electron characteristics. By integrating modified osprey optimization, the SA-OSNN approach enhances thermal management by dynamically adjusting model parameters in response to changing environmental conditions, ensuring efficient and effective thermal control. This method is used as an optimization tool that works in conjunction with established thermal management solutions, such as GaN, SiC, and AlN materials, which provide the physical properties necessary for effective heat dissipation. This analysis covers a temperature between −100°C and 200°C, examining frequencies up to 50 GHz validating the accuracy and reliability for GaAs and GaN HEMT thermal optimization. Overall, this research achieves a minimum error of 5.97834e−01 and 6.01251e−05. Also, SA-OSNN achieves an accuracy of 97% with better performances than existing methods.

用于砷化镓和氮化镓 HEMT 中有效热管理和自发热缓解的基于晶片注意力的鱼鹰尖峰神经网络
本研究引入基于束注意力的鱼鹰脉冲神经网络(SA-OSNN)来优化GaAs和GaN高电子迁移率晶体管(hemt)的热性能,这两种晶体管由于其优异的电子特性而对射频和微波电路至关重要。通过集成改进的鱼鹰优化,SA-OSNN方法通过动态调整模型参数来响应不断变化的环境条件,从而加强热管理,确保高效有效的热控制。该方法可作为一种优化工具,与现有的热管理解决方案(如GaN、SiC和AlN材料)结合使用,这些解决方案可提供有效散热所需的物理特性。该分析涵盖- 100°C至200°C的温度范围,检测频率高达50 GHz,验证了GaAs和GaN HEMT热优化的准确性和可靠性。总体而言,本研究的最小误差为5.97834e−01和6.01251e−05。此外,SA-OSNN的准确率达到97%,性能优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信