Scalable Manufacturing of Polymer Multi-Nanofiber Twisted Yarns

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohamad Keblawi, Adaugo Enuka, Darrian Shufford, Vince Beachley
{"title":"Scalable Manufacturing of Polymer Multi-Nanofiber Twisted Yarns","authors":"Mohamad Keblawi,&nbsp;Adaugo Enuka,&nbsp;Darrian Shufford,&nbsp;Vince Beachley","doi":"10.1002/adem.202401897","DOIUrl":null,"url":null,"abstract":"<p>\nContinuous high-strength polymer nanofiber yarns can be assembled into textiles suitable for numerous applications that benefit from the high surface-area-to-volume ratio of the component nanofibers. Electrospun nanofibers have been used to make multifiber twisted yarns (MFTYs). Traditionally, electrospun nanoyarns are made using self-bundling methods or cone spinning. However, these approaches inhibit ordered fiber architecture or postprocessing of filaments prior to yarn fabrication limiting yarn length, uniformity, and mechanical strength. A spinning process utilizing automated parallel track collection is capable of manufacturing MFTYs with microarchitecture control and integration of individual fiber postdrawing prior to yarn assembly. The advantage of this process is the ability to optimize electrospinning parameters, postprocessing parameters, and yarn spinning parameters independently. Polycaprolactone (PCL) fibers are electrospun with various parameters and made into long MFTYs that retain up to 50% of the strength of individual component nanofibers. Mechanical testing shows relationships between spinning parameters and yarn strength. The tenacity of PCL MFTYs exceeds the tenacity of most reported self-bundled nanofiber yarns by an order of magnitude or more. Thus, the alternative nanoyarn fabrication method presented in this work is able to produce yarns with highly tunable parameters with a significant increase in mechanical strength compared to other electrospun nanoyarns.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202401897","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401897","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Continuous high-strength polymer nanofiber yarns can be assembled into textiles suitable for numerous applications that benefit from the high surface-area-to-volume ratio of the component nanofibers. Electrospun nanofibers have been used to make multifiber twisted yarns (MFTYs). Traditionally, electrospun nanoyarns are made using self-bundling methods or cone spinning. However, these approaches inhibit ordered fiber architecture or postprocessing of filaments prior to yarn fabrication limiting yarn length, uniformity, and mechanical strength. A spinning process utilizing automated parallel track collection is capable of manufacturing MFTYs with microarchitecture control and integration of individual fiber postdrawing prior to yarn assembly. The advantage of this process is the ability to optimize electrospinning parameters, postprocessing parameters, and yarn spinning parameters independently. Polycaprolactone (PCL) fibers are electrospun with various parameters and made into long MFTYs that retain up to 50% of the strength of individual component nanofibers. Mechanical testing shows relationships between spinning parameters and yarn strength. The tenacity of PCL MFTYs exceeds the tenacity of most reported self-bundled nanofiber yarns by an order of magnitude or more. Thus, the alternative nanoyarn fabrication method presented in this work is able to produce yarns with highly tunable parameters with a significant increase in mechanical strength compared to other electrospun nanoyarns.

Abstract Image

连续的高强度聚合物纳米纤维纱可组装成适合多种应用的纺织品,这些应用可从纳米纤维组分的高表面积体积比中获益。电纺纳米纤维已被用于制造多纤维加捻纱(MFTY)。传统上,电纺纳米纱是采用自束法或锥形纺丝法制造的。然而,这些方法会抑制有序的纤维结构,或在纱线制造前对长丝进行后处理,从而限制了纱线的长度、均匀性和机械强度。利用自动平行轨迹收集的纺纱工艺能够在纱线组装前制造出具有微结构控制和单根纤维后牵伸整合的 MFTY。这种工艺的优势在于能够独立优化电纺参数、后处理参数和纱线纺纱参数。聚己内酯(PCL)纤维采用不同的参数进行电纺纱,制成长的 MFTY,其强度最多可保持单根纳米纤维强度的 50%。机械测试表明了纺丝参数与纱线强度之间的关系。PCL MFTY 的韧性比大多数已报道的自捆绑纳米纤维纱的韧性高出一个数量级或更多。因此,与其他电纺纳米纱线相比,这项工作中提出的替代纳米纱线制造方法能够生产出参数高度可调的纱线,并显著提高了机械强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信