Ming Xie, Zhaoquan Li, Yaopeng Duan, Jing Lin, Gaofeng Fu, Yongliang Mu
{"title":"Compressive Behaviors and Deformation Mechanisms of Open-Cell AlSi Foam","authors":"Ming Xie, Zhaoquan Li, Yaopeng Duan, Jing Lin, Gaofeng Fu, Yongliang Mu","doi":"10.1002/adem.202402818","DOIUrl":null,"url":null,"abstract":"<p>Open-cell Al<span></span>Si foams with varying cell sizes and pore structures are fabricated using infiltration casting. Foams with uniform cell sizes ranging from 2.0 to 4.0 mm and 1.5 to 2.0 mm exhibit typical open-cell walls. In contrast, a foam with a mixed cell size distribution (1.5 to 4.0 mm) demonstrates improved connectivity but exhibits more structural defects. Quasistatic uniaxial compression tests are performed to evaluate the compressive behavior of the foams. The deformation process and energy absorption mechanisms of three foams are comprehensively analyzed from macroscopic sample scale to pore scale using X-ray computed tomography. The results indicate that foams with smaller cell sizes deform uniformly, with the highest compressive strength of ≈20 MPa, while those with larger cell sizes exhibit localized deformation. The foam with mixed cell sizes and a hybrid scaffold structure (3D skeletal network) displays broader deformation zones and localized deformation, rather than distinct deformation bands.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402818","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Open-cell AlSi foams with varying cell sizes and pore structures are fabricated using infiltration casting. Foams with uniform cell sizes ranging from 2.0 to 4.0 mm and 1.5 to 2.0 mm exhibit typical open-cell walls. In contrast, a foam with a mixed cell size distribution (1.5 to 4.0 mm) demonstrates improved connectivity but exhibits more structural defects. Quasistatic uniaxial compression tests are performed to evaluate the compressive behavior of the foams. The deformation process and energy absorption mechanisms of three foams are comprehensively analyzed from macroscopic sample scale to pore scale using X-ray computed tomography. The results indicate that foams with smaller cell sizes deform uniformly, with the highest compressive strength of ≈20 MPa, while those with larger cell sizes exhibit localized deformation. The foam with mixed cell sizes and a hybrid scaffold structure (3D skeletal network) displays broader deformation zones and localized deformation, rather than distinct deformation bands.
期刊介绍:
Advanced Engineering Materials is the membership journal of three leading European Materials Societies
- German Materials Society/DGM,
- French Materials Society/SF2M,
- Swiss Materials Federation/SVMT.