Ishmail Sheriff, Nik Azimatolakma Awang, Mohd Suffian Yusoff, Ahmad Faris Ihsan Ismail, Nurasyiqin Khidir Neoh, Ahmad Syahir Zulkipli, Abdul Hakim Bin Salleh
{"title":"Microplastics Monitoring in an Extended Aeration Sewage Treatment Plant in Malaysia: Abundance, Characteristics, Removal and Environmental Emission","authors":"Ishmail Sheriff, Nik Azimatolakma Awang, Mohd Suffian Yusoff, Ahmad Faris Ihsan Ismail, Nurasyiqin Khidir Neoh, Ahmad Syahir Zulkipli, Abdul Hakim Bin Salleh","doi":"10.1007/s11270-025-07866-7","DOIUrl":null,"url":null,"abstract":"<p>Wastewater treatment plants have drawn the attention of scientists as one of the key point sources of microplastics leakage into the environment. This study examined the abundance, characteristics, and removal of microplastics in an extended aeration sewage treatment plant in Penang, Malaysia. During a two-week period, 3 L of influent and 8 L of final treated effluent, were collected from the facility using a stainless-steel bucket. The average microplastic concentration in the influent was 13.75 MPs/L, which decreased to 1.5 MPs/L in the final treated effluent. Despite attaining an average microplastics removal efficiency of 88.67%, the treatment plant still discharges between 2.37 million (2,370,000) and 4.74 million (4,740,000) microplastics per day into a local stream that feeds into the Kerian River. Fibres constitute a significant portion of the microplastic shapes detected in both the influent and effluent, accounting for 52.50% and 58.33%, respectively. The microplastics consisted of polyethylene/ethylene vinylacetate blend (PE/EVA), thermoplastic elastomers (TPE), chlorinated polyethylene (CM/CPE), styrene-ethylene-butylene-styrene (SEBS), and polyacrylamide (PARA). Among these, PE/EVA was the predominant polymer, representing 44.44% in the raw influent and 50% in the final treated effluent.</p>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-07866-7","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Wastewater treatment plants have drawn the attention of scientists as one of the key point sources of microplastics leakage into the environment. This study examined the abundance, characteristics, and removal of microplastics in an extended aeration sewage treatment plant in Penang, Malaysia. During a two-week period, 3 L of influent and 8 L of final treated effluent, were collected from the facility using a stainless-steel bucket. The average microplastic concentration in the influent was 13.75 MPs/L, which decreased to 1.5 MPs/L in the final treated effluent. Despite attaining an average microplastics removal efficiency of 88.67%, the treatment plant still discharges between 2.37 million (2,370,000) and 4.74 million (4,740,000) microplastics per day into a local stream that feeds into the Kerian River. Fibres constitute a significant portion of the microplastic shapes detected in both the influent and effluent, accounting for 52.50% and 58.33%, respectively. The microplastics consisted of polyethylene/ethylene vinylacetate blend (PE/EVA), thermoplastic elastomers (TPE), chlorinated polyethylene (CM/CPE), styrene-ethylene-butylene-styrene (SEBS), and polyacrylamide (PARA). Among these, PE/EVA was the predominant polymer, representing 44.44% in the raw influent and 50% in the final treated effluent.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.