Eco-friendly bismuth halide chalcogenide perovskites for solar energy harvesting

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jayawardane Thambugalage Sanjeewani Thakshila Jayawardane, Udugama Koralalage Don Muditha Akmal, Dengwei Hu, Pradeep Kumara Wijesekara Abeygunawardhana and Galhenage Asha Sewvandi
{"title":"Eco-friendly bismuth halide chalcogenide perovskites for solar energy harvesting","authors":"Jayawardane Thambugalage Sanjeewani Thakshila Jayawardane, Udugama Koralalage Don Muditha Akmal, Dengwei Hu, Pradeep Kumara Wijesekara Abeygunawardhana and Galhenage Asha Sewvandi","doi":"10.1039/D4SE01523A","DOIUrl":null,"url":null,"abstract":"<p >The quest to eliminate lead (Pb) content in perovskite photovoltaic materials has significantly shifted focus towards identifying viable Pb-free alternatives. This study provides a comprehensive theoretical investigation of CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>Se and CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>S as Pb alternative candidates. Density Functional Theory (DFT) calculations and the solar cell capacitance simulator (SCAPS) were used. The DFT analysis reveals that both CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>Se and CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>S possess indirect band gaps of 1.35 eV and 1.39 eV, respectively. CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>Se demonstrates a higher absorption coefficient, stronger absorption in the UV-visible regions, a broader absorption spectrum and better charge carrier mobilities compared to CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>S. CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>Se and CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>S based solar cells which show 24.06% and 21.85% power conversion efficiencies (PCEs), respectively. This study emphasizes the potential of CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>Se as a promising bismuth mixed halide chalcogenide compound for the development of sustainable perovskite solar cells. The findings provide a foundation for the guided design of novel bismuth chalcogenide compounds for optoelectronic applications and experimental studies.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 8","pages":" 2197-2206"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01523a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The quest to eliminate lead (Pb) content in perovskite photovoltaic materials has significantly shifted focus towards identifying viable Pb-free alternatives. This study provides a comprehensive theoretical investigation of CH3NH3BiI2Se and CH3NH3BiI2S as Pb alternative candidates. Density Functional Theory (DFT) calculations and the solar cell capacitance simulator (SCAPS) were used. The DFT analysis reveals that both CH3NH3BiI2Se and CH3NH3BiI2S possess indirect band gaps of 1.35 eV and 1.39 eV, respectively. CH3NH3BiI2Se demonstrates a higher absorption coefficient, stronger absorption in the UV-visible regions, a broader absorption spectrum and better charge carrier mobilities compared to CH3NH3BiI2S. CH3NH3BiI2Se and CH3NH3BiI2S based solar cells which show 24.06% and 21.85% power conversion efficiencies (PCEs), respectively. This study emphasizes the potential of CH3NH3BiI2Se as a promising bismuth mixed halide chalcogenide compound for the development of sustainable perovskite solar cells. The findings provide a foundation for the guided design of novel bismuth chalcogenide compounds for optoelectronic applications and experimental studies.

Abstract Image

用于太阳能收集的环保卤化铋硫系钙钛矿
消除钙钛矿光伏材料中铅(Pb)含量的探索已显著转移到确定可行的无铅替代品上。本研究对CH3NH3BiI2Se和CH3NH3BiI2S作为Pb候选物进行了全面的理论研究。采用密度泛函理论(DFT)计算和太阳能电池电容模拟器(SCAPS)。DFT分析表明,CH3NH3BiI2Se和CH3NH3BiI2S的间接带隙分别为1.35 eV和1.39 eV。与CH3NH3BiI2Se相比,CH3NH3BiI2Se具有更高的吸收系数、更强的紫外可见光吸收、更宽的吸收光谱和更好的载流子迁移率。CH3NH3BiI2Se和CH3NH3BiI2S基太阳能电池的功率转换效率分别为24.06%和21.85%。该研究强调了CH3NH3BiI2Se作为一种有前途的铋混合卤化物硫系化合物在可持续钙钛矿太阳能电池开发中的潜力。研究结果为新型硫系铋化合物的光电子应用和实验研究提供了指导设计基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信