Deciphering the electronic and NMR fingerprints of JP-10 fuel: a DFT study of exo-chair versus exo-boat isomers†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Feng Wang and Vladislav Vasilyev
{"title":"Deciphering the electronic and NMR fingerprints of JP-10 fuel: a DFT study of exo-chair versus exo-boat isomers†","authors":"Feng Wang and Vladislav Vasilyev","doi":"10.1039/D5SE00299K","DOIUrl":null,"url":null,"abstract":"<p >The rational design of high-energy-density (HED) sustainable aviation fuels (SAFs) often relies on understanding the electronic structures of fuel hydrocarbons. This study uses density functional theory (DFT) to investigate the <em>exo</em>-chair and <em>exo</em>-boat isomers of Jet Propellant 10 (JP-10) fuel. The <em>exo</em>-chair isomer is found to be more stable by 1.83 kcal mol<small><sup>−1</sup></small>, with an energy barrier of 3.65 kcal mol<small><sup>−1</sup></small> separating the two using the B3LYP/cc-pVTZ method. Despite small geometric differences, significant changes in the shape, dipole moments (0.0156 Debye for the <em>exo</em>-chair and 0.0426 Debye for the <em>exo</em>-boat) and NMR chemical shifts at the flag carbon (C5), the boat tip carbon (C10) and the hydrogens bonding with them. The B3PW91/cc-pVTZ method produces more accurate carbon NMR chemical shifts (RMSD (<em>δ</em><small><sub>C</sub></small>) = 1.48 ppm) than the B3LYP/cc-pVTZ method (RMSD (<em>δ</em><small><sub>C</sub></small>) = 3.21 ppm), whereas the reverse holds for the proton-NMR chemical shifts, RMSD (<em>δ</em><small><sub>H</sub></small>) = 0.33 ppm and 0.31 ppm, in agreement with early studies. The NMR trajectories during the chair and boat transition reveal the most significant changes at the transition state (TS). In addition, the carbon atoms engaging larger strain (<em>e.g.</em> junction carbons and the flag carbon) exhibit apparent deshielding. Excess orbital energy spectrum (EOES) analysis further identifies key inner valence orbital changes during the isomerization, indicating the role of bonding interactions in stabilizing the <em>exo</em>-chair isomer. These findings offer valuable insights into the electronic structural factors that influence the stability of multicyclic hydrocarbons, aiding the future design of more efficient SAFs.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 8","pages":" 2184-2196"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00299k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rational design of high-energy-density (HED) sustainable aviation fuels (SAFs) often relies on understanding the electronic structures of fuel hydrocarbons. This study uses density functional theory (DFT) to investigate the exo-chair and exo-boat isomers of Jet Propellant 10 (JP-10) fuel. The exo-chair isomer is found to be more stable by 1.83 kcal mol−1, with an energy barrier of 3.65 kcal mol−1 separating the two using the B3LYP/cc-pVTZ method. Despite small geometric differences, significant changes in the shape, dipole moments (0.0156 Debye for the exo-chair and 0.0426 Debye for the exo-boat) and NMR chemical shifts at the flag carbon (C5), the boat tip carbon (C10) and the hydrogens bonding with them. The B3PW91/cc-pVTZ method produces more accurate carbon NMR chemical shifts (RMSD (δC) = 1.48 ppm) than the B3LYP/cc-pVTZ method (RMSD (δC) = 3.21 ppm), whereas the reverse holds for the proton-NMR chemical shifts, RMSD (δH) = 0.33 ppm and 0.31 ppm, in agreement with early studies. The NMR trajectories during the chair and boat transition reveal the most significant changes at the transition state (TS). In addition, the carbon atoms engaging larger strain (e.g. junction carbons and the flag carbon) exhibit apparent deshielding. Excess orbital energy spectrum (EOES) analysis further identifies key inner valence orbital changes during the isomerization, indicating the role of bonding interactions in stabilizing the exo-chair isomer. These findings offer valuable insights into the electronic structural factors that influence the stability of multicyclic hydrocarbons, aiding the future design of more efficient SAFs.

Abstract Image

破译JP-10燃料的电子和核磁共振指纹:外椅型与外船型异构体的DFT研究
高能量密度可持续航空燃料的合理设计往往依赖于对燃料碳氢化合物电子结构的了解。本文利用密度泛函理论(DFT)研究了喷气推进剂10 (JP-10)燃料的外椅型和外船型异构体。用B3LYP/cc-pVTZ方法发现外显椅型异构体更稳定1.83 kcal mol−1,两者之间的能垒为3.65 kcal mol−1。尽管几何差异很小,但形状、偶极矩(外椅为0.0156 Debye,外船为0.0426 Debye)和旗碳(C5)、船尖碳(C10)以及与它们成键的氢的核磁共振化学位移都发生了显著变化。B3PW91/cc-pVTZ方法比B3LYP/cc-pVTZ方法(RMSD (δC) = 3.21 ppm)产生更精确的碳核磁共振化学位移(RMSD (δC) = 1.48 ppm),而质子核磁共振化学位移则相反,RMSD (δH) = 0.33 ppm和0.31 ppm,与早期研究一致。椅子型和船型转变过程中的核磁共振轨迹揭示了过渡态(TS)的最显著变化。此外,参与较大应变的碳原子(如结碳和旗碳)表现出明显的去屏蔽。多余轨道能谱(EOES)分析进一步确定了异构化过程中关键的内价轨道变化,表明键相互作用在稳定外椅异构体中的作用。这些发现对影响多环烃稳定性的电子结构因素提供了有价值的见解,有助于未来设计更高效的saf。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信