Xiaoyu Kong;Yun Cao;Shenghong Lei;Hengbo Zhu;Weirong Nie;Zhanwen Xi
{"title":"Low-Energy Consumption Actuation for Microelectrothermal Actuators via Capacitive Discharge Excitation","authors":"Xiaoyu Kong;Yun Cao;Shenghong Lei;Hengbo Zhu;Weirong Nie;Zhanwen Xi","doi":"10.1109/JMEMS.2025.3540417","DOIUrl":null,"url":null,"abstract":"Microelectrothermal actuators are widely used in various microelectromechanical systems (MEMS), but challenges related to energy consumption and response time persist, especially in energy-constrained systems. This paper presents an innovative approach to achieving low-energy consumption in microelectrothermal actuators through capacitive discharge excitation. A theoretical model is developed to analyze the actuator’s displacement, temperature, and response time as functions of applied voltage and capacitance. Experimental results validate the theoretical predictions, showing that with an applied voltage of 56 V and a capacitance of 0.1 mF, the actuator achieves a displacement of 160 <inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>m within 7.65 ms, consuming only 0.157 J of energy. Compared to traditional constant voltage excitation (24 V), the proposed capacitive discharge excitation method reduces energy consumption by 21.1% and shortens the response time by 81.4%. Additionally, a matching strategy for selecting capacitors is proposed, considering the limitations of available capacitor specifications. The study highlights that higher applied voltage and lower capacitance lead to faster response times and reduced energy consumption, offering a promising solution for energy-efficient MEMS applications. [2024-0225]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"34 2","pages":"184-193"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10884541/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Microelectrothermal actuators are widely used in various microelectromechanical systems (MEMS), but challenges related to energy consumption and response time persist, especially in energy-constrained systems. This paper presents an innovative approach to achieving low-energy consumption in microelectrothermal actuators through capacitive discharge excitation. A theoretical model is developed to analyze the actuator’s displacement, temperature, and response time as functions of applied voltage and capacitance. Experimental results validate the theoretical predictions, showing that with an applied voltage of 56 V and a capacitance of 0.1 mF, the actuator achieves a displacement of 160 $\mu $ m within 7.65 ms, consuming only 0.157 J of energy. Compared to traditional constant voltage excitation (24 V), the proposed capacitive discharge excitation method reduces energy consumption by 21.1% and shortens the response time by 81.4%. Additionally, a matching strategy for selecting capacitors is proposed, considering the limitations of available capacitor specifications. The study highlights that higher applied voltage and lower capacitance lead to faster response times and reduced energy consumption, offering a promising solution for energy-efficient MEMS applications. [2024-0225]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.