Study of Stiction Mitigation in Micromachine Structures via Naphthalene Sublimation

IF 2.5 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hamed Nikfarjam;Sepehr Sheikhlari;Siavash Pourkamali
{"title":"Study of Stiction Mitigation in Micromachine Structures via Naphthalene Sublimation","authors":"Hamed Nikfarjam;Sepehr Sheikhlari;Siavash Pourkamali","doi":"10.1109/JMEMS.2025.3527416","DOIUrl":null,"url":null,"abstract":"Micromachined devices are susceptible to stiction failure, where suspended structures irreversibly adhere due to surface forces. This paper investigates the effectiveness and reproducibility of simple, low-cost sublimation methods to reduce stiction using a saturated naphthalene-isopropyl alcohol (IPA) solution or molten naphthalene. Six categories of test structures were fabricated on silicon-on-insulator wafers, including narrow and wide cantilevers, clamped-clamped beams, parallel clamped-clamped beams, meandering beams, and suspended proof masses. We evaluated the effectiveness of air drying, IPA rinse, supercritical point drying (CPD), naphthalene-IPA solution, and molten naphthalene by identifying the longest and least stiff intact structure released for each method. Results showed that molten naphthalene outperformed CPD for wider structures, and reproducibility was confirmed over 10 repetitions per structure and method. These cost-effective, room-temperature techniques are well-suited for mitigating stiction in larger and softer structures, enhancing accessibility and availability for MEMS fabrication. [2024-0170]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"34 2","pages":"213-221"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10844949/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Micromachined devices are susceptible to stiction failure, where suspended structures irreversibly adhere due to surface forces. This paper investigates the effectiveness and reproducibility of simple, low-cost sublimation methods to reduce stiction using a saturated naphthalene-isopropyl alcohol (IPA) solution or molten naphthalene. Six categories of test structures were fabricated on silicon-on-insulator wafers, including narrow and wide cantilevers, clamped-clamped beams, parallel clamped-clamped beams, meandering beams, and suspended proof masses. We evaluated the effectiveness of air drying, IPA rinse, supercritical point drying (CPD), naphthalene-IPA solution, and molten naphthalene by identifying the longest and least stiff intact structure released for each method. Results showed that molten naphthalene outperformed CPD for wider structures, and reproducibility was confirmed over 10 repetitions per structure and method. These cost-effective, room-temperature techniques are well-suited for mitigating stiction in larger and softer structures, enhancing accessibility and availability for MEMS fabrication. [2024-0170]
通过萘升华缓解微机械结构中的粘滞问题研究
微机械设备容易发生粘滞失效,其中悬浮结构由于表面力而不可逆转地粘附。本文研究了使用饱和萘-异丙醇(IPA)溶液或熔融萘的简单、低成本升华方法的有效性和可重复性。在绝缘体硅晶片上制作了六类测试结构,包括窄悬臂和宽悬臂、夹紧梁、平行夹紧梁、弯曲梁和悬挂防块。我们评估了空气干燥、IPA漂洗、超临界点干燥(CPD)、萘-IPA溶液和熔融萘的有效性,通过确定每种方法释放的最长和最不僵硬的完整结构。结果表明,熔融萘在更宽的结构上优于CPD,并且每种结构和方法的重复性超过10次。这些具有成本效益的室温技术非常适合于减轻较大和较软结构的粘滞,提高MEMS制造的可及性和可用性。(2024 - 0170)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Microelectromechanical Systems
Journal of Microelectromechanical Systems 工程技术-工程:电子与电气
CiteScore
6.20
自引率
7.40%
发文量
115
审稿时长
7.5 months
期刊介绍: The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信