{"title":"Polarization-Dependent Loss Mitigation via Orthogonal Design Precoding and Interference Cancellation","authors":"Mohannad Shehadeh;Frank R. Kschischang","doi":"10.1109/LPT.2025.3555919","DOIUrl":null,"url":null,"abstract":"Recent work by Shehadeh and Kschischang provides a simple capacity-achieving scheme for channels with polarization-dependent loss (PDL) under common modeling assumptions via a careful choice of orthogonal-design-based precoding and interference cancellation. This letter extends that work with a simulation-based demonstration showing that this scheme remains highly effective at mitigating PDL in the highly practical setting of 16-QAM with Chase-decoded extended Hamming inner codes rather than the near-capacity inner codes considered in the original work. An alternative near-optimal variation of this scheme is also provided requiring only one inner code rather than two and suffering no penalty in the absence of PDL, making it much more practical.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 8","pages":"477-480"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10945413/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Recent work by Shehadeh and Kschischang provides a simple capacity-achieving scheme for channels with polarization-dependent loss (PDL) under common modeling assumptions via a careful choice of orthogonal-design-based precoding and interference cancellation. This letter extends that work with a simulation-based demonstration showing that this scheme remains highly effective at mitigating PDL in the highly practical setting of 16-QAM with Chase-decoded extended Hamming inner codes rather than the near-capacity inner codes considered in the original work. An alternative near-optimal variation of this scheme is also provided requiring only one inner code rather than two and suffering no penalty in the absence of PDL, making it much more practical.
期刊介绍:
IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.