{"title":"A Watt-Level, 3.3-V Triple-Stack Switched Capacitor Digital PA in FinFET Technology","authors":"Naor R. Shay;Eran Socher;Ofir Degani","doi":"10.1109/TMTT.2024.3509493","DOIUrl":null,"url":null,"abstract":"This work proposes and analyzes a new circuit topology that enables reliable triple-transistor stacking in the switched-capacitor digital power amplifier (SC-DPA) working from a 3.3-V supply, about three times the process maximum allowed voltage across the transistor nodes (<inline-formula> <tex-math>$V_{D,\\text {Max}}$ </tex-math></inline-formula>). The proposed topology employs capacitive feedback (CF) to meet device voltage constraints. Higher supply voltage usage results in reduced supply ripples and improved memory effects while allowing higher power watt-level SC-DPA. A 5–7-GHz, dual-core Doherty-like combining SC-DPA prototype was implemented and integrated into an all-digital polar transmitter (DPTX) using 16-nm FinFET CMOS technology. The SC-DPA demonstrates a maximum power (<inline-formula> <tex-math>$P_{\\max }$ </tex-math></inline-formula>)/power efficiency (PE) of 30.15 dBm/34.7% at 5.2 GHz. An error vector magnitude (EVM)/power consumption of −38 dB/830 mW is measured at 6.1-GHz and 9-dB BO (dBBO) from <inline-formula> <tex-math>$P_{\\max }$ </tex-math></inline-formula>, thus meeting MCS13 4096-QAM OFDM Wi-Fi7 requirement. The high-temperature operating life (HTOL) accelerating aging test was performed showing the ability to meet the expected lifetime of the device with only 0.5-dB <inline-formula> <tex-math>$P_{\\max }$ </tex-math></inline-formula> degradation.","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 4","pages":"1964-1974"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Microwave Theory and Techniques","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10786492/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This work proposes and analyzes a new circuit topology that enables reliable triple-transistor stacking in the switched-capacitor digital power amplifier (SC-DPA) working from a 3.3-V supply, about three times the process maximum allowed voltage across the transistor nodes ($V_{D,\text {Max}}$ ). The proposed topology employs capacitive feedback (CF) to meet device voltage constraints. Higher supply voltage usage results in reduced supply ripples and improved memory effects while allowing higher power watt-level SC-DPA. A 5–7-GHz, dual-core Doherty-like combining SC-DPA prototype was implemented and integrated into an all-digital polar transmitter (DPTX) using 16-nm FinFET CMOS technology. The SC-DPA demonstrates a maximum power ($P_{\max }$ )/power efficiency (PE) of 30.15 dBm/34.7% at 5.2 GHz. An error vector magnitude (EVM)/power consumption of −38 dB/830 mW is measured at 6.1-GHz and 9-dB BO (dBBO) from $P_{\max }$ , thus meeting MCS13 4096-QAM OFDM Wi-Fi7 requirement. The high-temperature operating life (HTOL) accelerating aging test was performed showing the ability to meet the expected lifetime of the device with only 0.5-dB $P_{\max }$ degradation.
期刊介绍:
The IEEE Transactions on Microwave Theory and Techniques focuses on that part of engineering and theory associated with microwave/millimeter-wave components, devices, circuits, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, and industrial, activities. Microwave theory and techniques relates to electromagnetic waves usually in the frequency region between a few MHz and a THz; other spectral regions and wave types are included within the scope of the Society whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.