Rheological aspects of xanthan gum: Governing factors and applications in water-based drilling fluids and enhanced oil recovery

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Fuchang You , Yu Wu , Yingying Guo , Yancheng Zheng
{"title":"Rheological aspects of xanthan gum: Governing factors and applications in water-based drilling fluids and enhanced oil recovery","authors":"Fuchang You ,&nbsp;Yu Wu ,&nbsp;Yingying Guo ,&nbsp;Yancheng Zheng","doi":"10.1016/j.carbpol.2025.123579","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of a low-carbon future, green, sustainable, and environmentally friendly oilfield development methods have become urgent priorities. The application of bio-based materials in water-based drilling fluids (WBDFs) and enhanced oil recovery (EOR) is emerging as a key strategy for driving sustainable development. Xanthan gum (XG), a natural polysaccharide, has gained significant attention due to its non-toxic, biodegradable, renewable, and environmentally friendly characteristics. Its shear-thinning rheological properties make it particularly suitable for oilfield development. This review summarizes the production, modification, and chemical structure of XG, focusing on key factors influencing the rheological behavior of its aqueous solutions, including shear rate, shear stress, concentration, pH, salinity, temperature, time, and polysaccharide interactions. Additionally, recent advances in XG's application in WBDFs and EOR are discussed. Although XG's viscosity stability and recovery under high-temperature and long-duration conditions present challenges, these issues have been largely addressed through increased salinity and chemical modifications. Finally, this review highlights key future research directions, such as exploring the structure-rheology relationship of XG, polysaccharide interactions, the rheological behavior and sustainability of XG derivatives, and its economic feasibility in oilfield development. These insights aim to improve XG's adaptability to harsh oilfield conditions and guide its use in similar environments.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"359 ","pages":"Article 123579"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725003601","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of a low-carbon future, green, sustainable, and environmentally friendly oilfield development methods have become urgent priorities. The application of bio-based materials in water-based drilling fluids (WBDFs) and enhanced oil recovery (EOR) is emerging as a key strategy for driving sustainable development. Xanthan gum (XG), a natural polysaccharide, has gained significant attention due to its non-toxic, biodegradable, renewable, and environmentally friendly characteristics. Its shear-thinning rheological properties make it particularly suitable for oilfield development. This review summarizes the production, modification, and chemical structure of XG, focusing on key factors influencing the rheological behavior of its aqueous solutions, including shear rate, shear stress, concentration, pH, salinity, temperature, time, and polysaccharide interactions. Additionally, recent advances in XG's application in WBDFs and EOR are discussed. Although XG's viscosity stability and recovery under high-temperature and long-duration conditions present challenges, these issues have been largely addressed through increased salinity and chemical modifications. Finally, this review highlights key future research directions, such as exploring the structure-rheology relationship of XG, polysaccharide interactions, the rheological behavior and sustainability of XG derivatives, and its economic feasibility in oilfield development. These insights aim to improve XG's adaptability to harsh oilfield conditions and guide its use in similar environments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信