Cost-effective pure and Fe-doped amorphous and composite Ni–P alloys as efficient electrocatalysts for alkaline oxygen evolution reaction

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Milica M. Vasić , Vladimir A. Blagojević , Tomáš Žák , Biljana Šljukić , Dragica M. Minić
{"title":"Cost-effective pure and Fe-doped amorphous and composite Ni–P alloys as efficient electrocatalysts for alkaline oxygen evolution reaction","authors":"Milica M. Vasić ,&nbsp;Vladimir A. Blagojević ,&nbsp;Tomáš Žák ,&nbsp;Biljana Šljukić ,&nbsp;Dragica M. Minić","doi":"10.1016/j.jpcs.2025.112756","DOIUrl":null,"url":null,"abstract":"<div><div>Amorphous and nanocrystalline Ni–P alloys are suitable for different applications in various fields of modern technology, including the catalytic ones. In this work, several amorphous/nanocrystalline Ni–P and Ni–Fe–P alloys were prepared in powder form by simple chemical reduction method, using different reactants ratios, and studied in terms of electrocatalytic activity for oxygen evolution reaction (OER) in alkaline environment (0.1 M KOH). The prepared samples were thoroughly characterized regarding their microstructural properties and electrochemical behavior. Their OER performance considerably outperformed that of pure Ni (fcc) powder, and was strongly influenced by their composition and microstructure. Due to its specific electronic structure, mostly amorphous Fe-containing Ni–P-based alloy demonstrated OER activity superior to all other samples, according to low Tafel slope of 72 mV dec<sup>−1</sup> and overpotential at 10 mA cm<sup>−2</sup> of 0.35 V, and relatively good durability. Quantum chemical calculations additionally confirmed the beneficial effect of Fe addition on the OER performance of Ni–P materials. The findings arising from this study contribute to further development of cost-effective, efficient and durable non-noble metal-based electrocatalysts for OER, with a view to future progress in the field of clean energy.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"204 ","pages":"Article 112756"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725002082","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Amorphous and nanocrystalline Ni–P alloys are suitable for different applications in various fields of modern technology, including the catalytic ones. In this work, several amorphous/nanocrystalline Ni–P and Ni–Fe–P alloys were prepared in powder form by simple chemical reduction method, using different reactants ratios, and studied in terms of electrocatalytic activity for oxygen evolution reaction (OER) in alkaline environment (0.1 M KOH). The prepared samples were thoroughly characterized regarding their microstructural properties and electrochemical behavior. Their OER performance considerably outperformed that of pure Ni (fcc) powder, and was strongly influenced by their composition and microstructure. Due to its specific electronic structure, mostly amorphous Fe-containing Ni–P-based alloy demonstrated OER activity superior to all other samples, according to low Tafel slope of 72 mV dec−1 and overpotential at 10 mA cm−2 of 0.35 V, and relatively good durability. Quantum chemical calculations additionally confirmed the beneficial effect of Fe addition on the OER performance of Ni–P materials. The findings arising from this study contribute to further development of cost-effective, efficient and durable non-noble metal-based electrocatalysts for OER, with a view to future progress in the field of clean energy.

Abstract Image

具有成本效益的纯、掺铁非晶和复合 Ni-P 合金作为碱性氧进化反应的高效电催化剂
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信