Iguratimod modulates osteoclast differentiation in rheumatoid arthritis: Insights into AMPK/HIF-1α signaling pathway regulation

IF 2.7 4区 生物学 Q1 ANATOMY & MORPHOLOGY
Huang Ying , Li Xingyi , Liu Jun , Li Peiting , Yue Xin , Zeng Jiashun , Li Long
{"title":"Iguratimod modulates osteoclast differentiation in rheumatoid arthritis: Insights into AMPK/HIF-1α signaling pathway regulation","authors":"Huang Ying ,&nbsp;Li Xingyi ,&nbsp;Liu Jun ,&nbsp;Li Peiting ,&nbsp;Yue Xin ,&nbsp;Zeng Jiashun ,&nbsp;Li Long","doi":"10.1016/j.tice.2025.102894","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Rheumatoid arthritis (RA) leads to joint deformities and diminishes quality of life if not managed promptly. Investigating Iguratimod effects on osteoclast differentiation in RA patients could provide insights into disease management.</div></div><div><h3>Methods</h3><div>Peripheral blood mononuclear cells (PBMCs) were extracted from blood samples taken from RA patients. TRAP staining confirmed the ability of these cells to differentiate into osteoclasts. Those cells were treated with Iguratimod, AMPK agonist (AICAR), and HIF-1α interference (PX-478) during osteoclast induction. CCK8, flow cytometry, ELISA, qPCR, and WB were used to detect changes after exposure in each group.</div></div><div><h3>Results</h3><div>Iguratimod, AICAR and PX-478 reduced osteoclast formation and viability while promoting apoptosis. ELISA results showed that exposure with Iguratimod, AICAR and PX-478 significantly reduced the levels of CXCL8, CCL20, TNF-α, IL-1, IL-6, IL-17 and TPRA secreted by PBMCs from RA patients. In addition, the results demonstrate that Iguratimod, along with AICAR, PX-478, and Leflunomide, significantly suppresses the expression of osteoclast-specific markers (HIF-1α, TRAP, CTSK, CTR, MMP9, and RANK) at both mRNA and protein levels. Notably, Iguratimod, AICAR, and Leflunomide increase the expression of AMPK and p-AMPK, while PX-478 decreases their expression.</div></div><div><h3>Conclusions</h3><div>Iguratimod potentially modulates AMPK/HIF-1α pathway, thereby suppressing release of inflammatory factors and influencing differentiation of peripheral blood osteoclasts in RA patients. These findings suggest promising therapeutic strategies for exposure of joint deformities associated with RA.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"95 ","pages":"Article 102894"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816625001740","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Rheumatoid arthritis (RA) leads to joint deformities and diminishes quality of life if not managed promptly. Investigating Iguratimod effects on osteoclast differentiation in RA patients could provide insights into disease management.

Methods

Peripheral blood mononuclear cells (PBMCs) were extracted from blood samples taken from RA patients. TRAP staining confirmed the ability of these cells to differentiate into osteoclasts. Those cells were treated with Iguratimod, AMPK agonist (AICAR), and HIF-1α interference (PX-478) during osteoclast induction. CCK8, flow cytometry, ELISA, qPCR, and WB were used to detect changes after exposure in each group.

Results

Iguratimod, AICAR and PX-478 reduced osteoclast formation and viability while promoting apoptosis. ELISA results showed that exposure with Iguratimod, AICAR and PX-478 significantly reduced the levels of CXCL8, CCL20, TNF-α, IL-1, IL-6, IL-17 and TPRA secreted by PBMCs from RA patients. In addition, the results demonstrate that Iguratimod, along with AICAR, PX-478, and Leflunomide, significantly suppresses the expression of osteoclast-specific markers (HIF-1α, TRAP, CTSK, CTR, MMP9, and RANK) at both mRNA and protein levels. Notably, Iguratimod, AICAR, and Leflunomide increase the expression of AMPK and p-AMPK, while PX-478 decreases their expression.

Conclusions

Iguratimod potentially modulates AMPK/HIF-1α pathway, thereby suppressing release of inflammatory factors and influencing differentiation of peripheral blood osteoclasts in RA patients. These findings suggest promising therapeutic strategies for exposure of joint deformities associated with RA.
Iguratimod可调节类风湿性关节炎的破骨细胞分化:AMPK/HIF-1α信号通路调控的启示
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue & cell
Tissue & cell 医学-解剖学与形态学
CiteScore
3.90
自引率
0.00%
发文量
234
期刊介绍: Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed. Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信