Influence of reduction duration on reduced graphene oxide for supercapacitor energy storage enhancement

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sanjeev Gautam , Jaswinder Singh Sidhu , Monika Verma
{"title":"Influence of reduction duration on reduced graphene oxide for supercapacitor energy storage enhancement","authors":"Sanjeev Gautam ,&nbsp;Jaswinder Singh Sidhu ,&nbsp;Monika Verma","doi":"10.1016/j.cartre.2025.100499","DOIUrl":null,"url":null,"abstract":"<div><div>Reduced graphene oxide (rGO) has attracted significant attention in carbon-based energy storage devices due to its promising electrochemical properties. The performance of reduced graphene oxide (rGO) in supercapacitor energy storage devices is remarkably influenced by the duration of its reduction process. In this study, graphene oxide (GO) synthesized via a modified Hummer’s method and systematically reduced over varying durations to investigate the impact of reduction time on the structural and electrochemical properties of rGO. The reduction process was monitored using <em>ex-situ</em> X-ray diffraction (XRD), Raman spectroscopy, and High-resolution Transmission Electron Microscopy (HR-TEM) to gain detailed insights into the evolution of rGO over time. Structural analyses employing XRD, Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy revealed that prolonged reduction led to increase crystallite size, decrease interlayer spacing, and reduced defect densities. Cyclic voltammetry measurements demonstrated a direct correlation between reduction duration and specific capacitance, with longer reduction times enhancing the energy storage performance of rGO. These findings, including Electrochemical Impedance Spectroscopy (EIS), underscore the critical influence of reduction duration on optimizing rGO for supercapacitor applications.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"19 ","pages":"Article 100499"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925000495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Reduced graphene oxide (rGO) has attracted significant attention in carbon-based energy storage devices due to its promising electrochemical properties. The performance of reduced graphene oxide (rGO) in supercapacitor energy storage devices is remarkably influenced by the duration of its reduction process. In this study, graphene oxide (GO) synthesized via a modified Hummer’s method and systematically reduced over varying durations to investigate the impact of reduction time on the structural and electrochemical properties of rGO. The reduction process was monitored using ex-situ X-ray diffraction (XRD), Raman spectroscopy, and High-resolution Transmission Electron Microscopy (HR-TEM) to gain detailed insights into the evolution of rGO over time. Structural analyses employing XRD, Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy revealed that prolonged reduction led to increase crystallite size, decrease interlayer spacing, and reduced defect densities. Cyclic voltammetry measurements demonstrated a direct correlation between reduction duration and specific capacitance, with longer reduction times enhancing the energy storage performance of rGO. These findings, including Electrochemical Impedance Spectroscopy (EIS), underscore the critical influence of reduction duration on optimizing rGO for supercapacitor applications.
还原时间对还原氧化石墨烯增强超级电容器储能性能的影响
还原氧化石墨烯(rGO)由于其具有良好的电化学性能,在碳基储能器件中引起了广泛的关注。还原氧化石墨烯(rGO)在超级电容器储能装置中的性能受还原过程的持续时间的显著影响。在这项研究中,通过改进Hummer的方法合成氧化石墨烯(GO),并在不同的时间内系统地还原,以研究还原时间对氧化石墨烯结构和电化学性能的影响。利用x射线衍射(XRD)、拉曼光谱(Raman spectroscopy)和高分辨率透射电子显微镜(HR-TEM)监测还原过程,以详细了解还原氧化石墨烯随时间的演变过程。利用XRD、FTIR和拉曼光谱进行的结构分析表明,长时间的还原导致晶体尺寸增大,层间距减小,缺陷密度降低。循环伏安法测量表明还原时间与比电容之间存在直接关系,还原时间越长,还原氧化石墨烯的储能性能越好。这些发现,包括电化学阻抗谱(EIS),强调了还原时间对优化超级电容器应用的还原氧化石墨烯的关键影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信