Dual electric fields in Ni-CdS@Ni(OH)2 heterojunction: A synergistic spatial charge separation approach for enhanced coupled CO2 photoreduction and selective toluene oxidation

Khakemin Khan , Ahmed Mahmood Idris , Haseebul Hassan , Sajjad Haider , Salah Ud-Din Khan , Antonio Miotello , Ihsanullah Khan
{"title":"Dual electric fields in Ni-CdS@Ni(OH)2 heterojunction: A synergistic spatial charge separation approach for enhanced coupled CO2 photoreduction and selective toluene oxidation","authors":"Khakemin Khan ,&nbsp;Ahmed Mahmood Idris ,&nbsp;Haseebul Hassan ,&nbsp;Sajjad Haider ,&nbsp;Salah Ud-Din Khan ,&nbsp;Antonio Miotello ,&nbsp;Ihsanullah Khan","doi":"10.1016/j.apmate.2025.100284","DOIUrl":null,"url":null,"abstract":"<div><div>Simultaneously inducing dual built-in electric fields (EFs) both within a single component and at the heterojunction interface creates a dual-driving force that is crucial for promoting spatial charge separation. This is particularly significant in challenging coupled systems, such as CO<sub>2</sub> photoreduction integrated with selective oxidation of toluene to benzaldehyde. However, developing such a system is quite challenging and often requires a precise design and engineering. Herein, we demonstrate a unique Ni-CdS@Ni(OH)<sub>2</sub> heterojunction synthesized via an <em>in-situ</em> self-assembly method. Comprehensive mechanistic and theoretical investigations reveal that the Ni-CdS@Ni(OH)<sub>2</sub> heterojunction induces dual electric fields (EFs): an intrinsic polarized electric-field within the CdS lattice from Ni doping and an interfacial electric-field from the growth of ultrathin nanosheets of Ni(OH)<sub>2</sub> on Ni-CdS nanorods, enabling efficient spatial charge separation and enhanced redox potential. As proof of concept, the Ni-CdS@Ni(OH)<sub>2</sub> heterojunction simultaneously exhibits outstanding bifunctional photocatalytic performance, producing CO at a rate of 427 ​μmol ​g<sup>−1</sup> ​h<sup>−1</sup> and selectively oxidizing toluene to benzaldehyde at a rate of 1476 ​μmol ​g<sup>−1</sup> ​h<sup>−1</sup> with a selectivity exceeding 85%. This work offers a promising strategy to optimize the utilization of photogenerated carriers in heterojunction photocatalysts, advancing synergistic photocatalytic redox systems.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 3","pages":"Article 100284"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X2500020X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Simultaneously inducing dual built-in electric fields (EFs) both within a single component and at the heterojunction interface creates a dual-driving force that is crucial for promoting spatial charge separation. This is particularly significant in challenging coupled systems, such as CO2 photoreduction integrated with selective oxidation of toluene to benzaldehyde. However, developing such a system is quite challenging and often requires a precise design and engineering. Herein, we demonstrate a unique Ni-CdS@Ni(OH)2 heterojunction synthesized via an in-situ self-assembly method. Comprehensive mechanistic and theoretical investigations reveal that the Ni-CdS@Ni(OH)2 heterojunction induces dual electric fields (EFs): an intrinsic polarized electric-field within the CdS lattice from Ni doping and an interfacial electric-field from the growth of ultrathin nanosheets of Ni(OH)2 on Ni-CdS nanorods, enabling efficient spatial charge separation and enhanced redox potential. As proof of concept, the Ni-CdS@Ni(OH)2 heterojunction simultaneously exhibits outstanding bifunctional photocatalytic performance, producing CO at a rate of 427 ​μmol ​g−1 ​h−1 and selectively oxidizing toluene to benzaldehyde at a rate of 1476 ​μmol ​g−1 ​h−1 with a selectivity exceeding 85%. This work offers a promising strategy to optimize the utilization of photogenerated carriers in heterojunction photocatalysts, advancing synergistic photocatalytic redox systems.

Abstract Image

Ni-CdS@Ni(OH)2异质结中的双电场:一种增强耦合CO2光还原和选择性甲苯氧化的协同空间电荷分离方法
同时在单个元件内部和异质结界面处诱导双内置电场(EFs)产生双驱动力,这对促进空间电荷分离至关重要。这在具有挑战性的耦合系统中尤其重要,例如二氧化碳光还原与甲苯选择性氧化合成苯甲醛。然而,开发这样一个系统是相当具有挑战性的,通常需要精确的设计和工程。在这里,我们展示了一个独特的Ni-CdS@Ni(OH)2异质结通过原位自组装方法合成。综合机理和理论研究表明,Ni-CdS@Ni(OH)2异质结诱导了双电场(EFs): Ni掺杂在CdS晶格内产生的本征极化电场和Ni(OH)2超薄纳米片在Ni-CdS纳米棒上生长产生的界面电场,实现了有效的空间电荷分离和氧化还原电位的增强。作为概念证明,Ni-CdS@Ni(OH)2异质结同时表现出出色的双功能光催化性能,以427 μmol g−1 h−1的速率生成CO,并以1476 μmol g−1 h−1的速率选择性地将甲苯氧化为苯甲醛,选择性超过85%。这项工作为优化异质结光催化剂中光生载体的利用,推进协同光催化氧化还原体系提供了一个有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信