Yixing Li , Tongyang Li , Jinteng Feng , Bohao Liu , Zhiyu Wang , Jiahui He , Zhe Chen , Runyi Tao , Hongyi Wang , Kun Fan , Ye Sun , Jizhao Wang , Baolin Guo , Guangjian Zhang
{"title":"Acid-responsive contractile hyaluronic acid-based hydrogel loaded with ginsenoside Rg1 for hemostasis and promotion of gastric wound healing","authors":"Yixing Li , Tongyang Li , Jinteng Feng , Bohao Liu , Zhiyu Wang , Jiahui He , Zhe Chen , Runyi Tao , Hongyi Wang , Kun Fan , Ye Sun , Jizhao Wang , Baolin Guo , Guangjian Zhang","doi":"10.1016/j.biomaterials.2025.123320","DOIUrl":null,"url":null,"abstract":"<div><div>Due to constant stimulation by stomach acid and local bleeding, gastric tissue wounds tend to heal slowly and complications such as anastomotic leakage have a high incidence. Suturing is often used to treat gastric wounds in clinic, but it still faces risks such as bleeding, slow healing, and leakage. Recently, hydrogel have been widely used to treat various types of wounds. Although hydrogels have shown promising efficacy in wound healing, it is still a challenge in dealing with wounds in gastric tissue for the poor adaptability of traditional materials in acidic environments. Hence, a series of pH responsive and good tissue adhesive hydrogels (MA-HA/AA) based on methacryloyl hyaluronic acid (MA-HA) and acryloyl-6-aminocaproic acid (AA) via in situ photo-crosslinking were designed, and anti-inflammatory and pro-healing traditional Chinese medicines ginsenoside Rg1 was incorporated into the hydrogel to treat gastric tissue wound. These acid-responsive hydrogels could form effective acid-resistant barriers and could lead to hemostasis rapidly through its strong adhesion. Besides, the hydrogels contracted under an acidic environment, which could tighten the gastric tissue wounds and sustained release the loaded ginsenoside Rg1. In addition, the hydrogels showed excellent biocompatibility and <em>in vivo</em> degradability. In summary, the acid-responsive contractile hyaluronic acid hydrogel loaded with ginsenoside Rg1 had good properties for hemostasis and acid-resistance to facilitate the promotion of gastric wounds healing.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"321 ","pages":"Article 123320"},"PeriodicalIF":12.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014296122500239X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Due to constant stimulation by stomach acid and local bleeding, gastric tissue wounds tend to heal slowly and complications such as anastomotic leakage have a high incidence. Suturing is often used to treat gastric wounds in clinic, but it still faces risks such as bleeding, slow healing, and leakage. Recently, hydrogel have been widely used to treat various types of wounds. Although hydrogels have shown promising efficacy in wound healing, it is still a challenge in dealing with wounds in gastric tissue for the poor adaptability of traditional materials in acidic environments. Hence, a series of pH responsive and good tissue adhesive hydrogels (MA-HA/AA) based on methacryloyl hyaluronic acid (MA-HA) and acryloyl-6-aminocaproic acid (AA) via in situ photo-crosslinking were designed, and anti-inflammatory and pro-healing traditional Chinese medicines ginsenoside Rg1 was incorporated into the hydrogel to treat gastric tissue wound. These acid-responsive hydrogels could form effective acid-resistant barriers and could lead to hemostasis rapidly through its strong adhesion. Besides, the hydrogels contracted under an acidic environment, which could tighten the gastric tissue wounds and sustained release the loaded ginsenoside Rg1. In addition, the hydrogels showed excellent biocompatibility and in vivo degradability. In summary, the acid-responsive contractile hyaluronic acid hydrogel loaded with ginsenoside Rg1 had good properties for hemostasis and acid-resistance to facilitate the promotion of gastric wounds healing.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.