Structure-preserving compact ADI schemes for the space fractional Klein-Gordon-Schrödinger equations and the dynamic simulation of solitary wave solutions

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Li Chai, Yang Liu, Hong Li, Zhichao Fang
{"title":"Structure-preserving compact ADI schemes for the space fractional Klein-Gordon-Schrödinger equations and the dynamic simulation of solitary wave solutions","authors":"Li Chai,&nbsp;Yang Liu,&nbsp;Hong Li,&nbsp;Zhichao Fang","doi":"10.1016/j.amc.2025.129443","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we introduce a novel structure-preserving compact alternating direction implicit (ADI) difference scheme based on the BDF2-<em>θ</em> and the ADI algorithm for solving the space fractional Klein-Gordon-Schrödinger equations. The primary focus of this article lies in the theoretical analysis and computational efficiency of the proposed schemes, which encompasses rigorous proofs of the error estimation, stability, and approximate conservation laws. Furthermore, we provide a comprehensive exposition on the implementation of these schemes, detailing their efficient execution. Comparative analysis of numerical simulations reveal the role of the fractional parameters for the solitary wave solutions and check the feasibility of the constructed new structure-preserving schemes.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"500 ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001705","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we introduce a novel structure-preserving compact alternating direction implicit (ADI) difference scheme based on the BDF2-θ and the ADI algorithm for solving the space fractional Klein-Gordon-Schrödinger equations. The primary focus of this article lies in the theoretical analysis and computational efficiency of the proposed schemes, which encompasses rigorous proofs of the error estimation, stability, and approximate conservation laws. Furthermore, we provide a comprehensive exposition on the implementation of these schemes, detailing their efficient execution. Comparative analysis of numerical simulations reveal the role of the fractional parameters for the solitary wave solutions and check the feasibility of the constructed new structure-preserving schemes.
空间分数阶Klein-Gordon-Schrödinger方程的保结构紧致ADI格式及孤波解的动态模拟
本文提出了一种新的基于BDF2-θ和ADI算法的保结构紧凑交替方向隐式差分格式,用于求解空间分数阶Klein-Gordon-Schrödinger方程。本文的主要重点在于所提出的方案的理论分析和计算效率,其中包括误差估计,稳定性和近似守恒定律的严格证明。此外,我们对这些方案的实施进行了全面的阐述,详细说明了它们的有效执行。数值模拟的对比分析揭示了分数参数对孤立波解的作用,并验证了所构建的新保结构方案的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信