Optimization of Linagliptin-loaded polymersomes via response surface methodology: A repurposed therapeutic strategy for hepatic encephalopathy prevention

IF 4.5 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Nabila M. Sweed , Heba T. Elbalkiny , Eslam Magdy , Mahitab Ramadan , Shahin Mahmoud , Toka Mohamed , Islam S. Mannaa , Mai A. Zaafan
{"title":"Optimization of Linagliptin-loaded polymersomes via response surface methodology: A repurposed therapeutic strategy for hepatic encephalopathy prevention","authors":"Nabila M. Sweed ,&nbsp;Heba T. Elbalkiny ,&nbsp;Eslam Magdy ,&nbsp;Mahitab Ramadan ,&nbsp;Shahin Mahmoud ,&nbsp;Toka Mohamed ,&nbsp;Islam S. Mannaa ,&nbsp;Mai A. Zaafan","doi":"10.1016/j.jddst.2025.106855","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to prepare linagliptin-loaded polymersomes in order to enhance its stability, bioavailability, and to investigate its potential in the prophylaxis against hepatic encephalopathy (HE). Polymersomes were formulated using solvent injection technique and optimized using D-optimal design, where the effect of drug to polymer ratio (X<sub>1</sub>) and polymer type, whether Poly (D, L-lactic-co-glycolide) or polycaprolactone (X<sub>2</sub>) were studied. Fifteen formulae were prepared and evaluated for entrapment efficiency % (Y<sub>1</sub>), particle size (Y<sub>2</sub>), and zeta potential (Y<sub>3</sub>). The optimized formula was prepared using polycaprolactone polymer with a drug to polymer ratio of 1:8.9. The optimized formula showed an entrapment efficiency % of 73 ± 1.04 %, a particle size of 184.1 ± 1.45 nm, and a zeta potential of −21.2 ± 0.97 mV. In-vitro drug release showed remarkable sustained release profile for linagliptin-loaded polymersomes as compared to the standard linagliptin. In-vivo pharmacokinetic studies in rats showed a 262 % increase in bioavailability of linagliptin-loaded polymersomes. Moreover, linagliptin-loaded polymersomes showed promising results in a rat model of hepatic encephalopathy, with marked improvement in markers such as alanine transaminase (ALT), aspartate aminotransferase (AST), ammonia levels, and hippocampus brain-derived neurotrophic factor levels (BDNF). Our results showed that the optimized linagliptin-loaded polymersomes formula is a promising drug delivery system for enhancing linagliptin bioavailability, offering potential therapeutic benefits for managing HE and other diseases requiring sustained release and enhanced bioavailability.</div></div>","PeriodicalId":15600,"journal":{"name":"Journal of Drug Delivery Science and Technology","volume":"108 ","pages":"Article 106855"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Delivery Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1773224725002588","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to prepare linagliptin-loaded polymersomes in order to enhance its stability, bioavailability, and to investigate its potential in the prophylaxis against hepatic encephalopathy (HE). Polymersomes were formulated using solvent injection technique and optimized using D-optimal design, where the effect of drug to polymer ratio (X1) and polymer type, whether Poly (D, L-lactic-co-glycolide) or polycaprolactone (X2) were studied. Fifteen formulae were prepared and evaluated for entrapment efficiency % (Y1), particle size (Y2), and zeta potential (Y3). The optimized formula was prepared using polycaprolactone polymer with a drug to polymer ratio of 1:8.9. The optimized formula showed an entrapment efficiency % of 73 ± 1.04 %, a particle size of 184.1 ± 1.45 nm, and a zeta potential of −21.2 ± 0.97 mV. In-vitro drug release showed remarkable sustained release profile for linagliptin-loaded polymersomes as compared to the standard linagliptin. In-vivo pharmacokinetic studies in rats showed a 262 % increase in bioavailability of linagliptin-loaded polymersomes. Moreover, linagliptin-loaded polymersomes showed promising results in a rat model of hepatic encephalopathy, with marked improvement in markers such as alanine transaminase (ALT), aspartate aminotransferase (AST), ammonia levels, and hippocampus brain-derived neurotrophic factor levels (BDNF). Our results showed that the optimized linagliptin-loaded polymersomes formula is a promising drug delivery system for enhancing linagliptin bioavailability, offering potential therapeutic benefits for managing HE and other diseases requiring sustained release and enhanced bioavailability.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
8.00%
发文量
879
审稿时长
94 days
期刊介绍: The Journal of Drug Delivery Science and Technology is an international journal devoted to drug delivery and pharmaceutical technology. The journal covers all innovative aspects of all pharmaceutical dosage forms and the most advanced research on controlled release, bioavailability and drug absorption, nanomedicines, gene delivery, tissue engineering, etc. Hot topics, related to manufacturing processes and quality control, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信