Complex-Amplitude-Modulated Meta-Device for Optical Image Processing

Chip Pub Date : 2025-02-14 DOI:10.1016/j.chip.2025.100132
Xincheng Jiang , Peicheng Lin , Yeang Zhang , Ting Xu , Yan-qing Lu , Jun-long Kou
{"title":"Complex-Amplitude-Modulated Meta-Device for Optical Image Processing","authors":"Xincheng Jiang ,&nbsp;Peicheng Lin ,&nbsp;Yeang Zhang ,&nbsp;Ting Xu ,&nbsp;Yan-qing Lu ,&nbsp;Jun-long Kou","doi":"10.1016/j.chip.2025.100132","DOIUrl":null,"url":null,"abstract":"<div><div>Nowadays, convolutional neural networks (CNNs) have become a powerful tool in areas such as object recognition, and natural language processing (NLP). However, considering that electronic convolutional operation always contains million-level parameters and complex calculation process, it consumes a large number of computing resources and time. To overcome these limitations, we propose a design of complex-amplitude-modulated meta-device which could perform various functions of image processing. In this work, we demonstrate the excellent performance of two-dimensional edge detection and Gaussian filtering. The proposed convolutional system serves as a new optical computing hardware, and provides a new approach for CNNs, biological microscopy and near-infrared imaging.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 2","pages":"Article 100132"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472325000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, convolutional neural networks (CNNs) have become a powerful tool in areas such as object recognition, and natural language processing (NLP). However, considering that electronic convolutional operation always contains million-level parameters and complex calculation process, it consumes a large number of computing resources and time. To overcome these limitations, we propose a design of complex-amplitude-modulated meta-device which could perform various functions of image processing. In this work, we demonstrate the excellent performance of two-dimensional edge detection and Gaussian filtering. The proposed convolutional system serves as a new optical computing hardware, and provides a new approach for CNNs, biological microscopy and near-infrared imaging.
用于光学图像处理的复调幅元器件
如今,卷积神经网络(cnn)已经成为物体识别和自然语言处理(NLP)等领域的强大工具。然而,由于电子卷积运算总是包含百万级参数和复杂的计算过程,消耗了大量的计算资源和时间。为了克服这些限制,我们提出了一种复杂调幅元器件的设计,可以执行各种图像处理功能。在这项工作中,我们证明了二维边缘检测和高斯滤波的优异性能。所提出的卷积系统作为一种新的光学计算硬件,为cnn、生物显微镜和近红外成像提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信