On the rainbow planar Turán number of paths

IF 0.7 3区 数学 Q2 MATHEMATICS
Ervin Győri , Ryan R. Martin , Addisu Paulos , Casey Tompkins , Kitti Varga
{"title":"On the rainbow planar Turán number of paths","authors":"Ervin Győri ,&nbsp;Ryan R. Martin ,&nbsp;Addisu Paulos ,&nbsp;Casey Tompkins ,&nbsp;Kitti Varga","doi":"10.1016/j.disc.2025.114523","DOIUrl":null,"url":null,"abstract":"<div><div>An edge-colored graph is said to contain a rainbow-<em>F</em> if it contains <em>F</em> as a subgraph and every edge of <em>F</em> is a distinct color. The problem of maximizing the number of edges among <em>n</em>-vertex properly edge-colored graphs not containing a rainbow-<em>F</em>, known as the rainbow Turán problem, was initiated by Keevash, Mubayi, Sudakov, and Verstraëte. We investigate a variation of this problem with the additional restriction that the graph is planar and we denote the corresponding extremal number by <span><math><msubsup><mrow><mi>ex</mi></mrow><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>. In particular, we determine <span><math><msubsup><mrow><mi>ex</mi></mrow><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span> denotes the 5-vertex path.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114523"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001311","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An edge-colored graph is said to contain a rainbow-F if it contains F as a subgraph and every edge of F is a distinct color. The problem of maximizing the number of edges among n-vertex properly edge-colored graphs not containing a rainbow-F, known as the rainbow Turán problem, was initiated by Keevash, Mubayi, Sudakov, and Verstraëte. We investigate a variation of this problem with the additional restriction that the graph is planar and we denote the corresponding extremal number by exP(n,F). In particular, we determine exP(n,P5), where P5 denotes the 5-vertex path.
在彩虹平面上Turán路径数
如果一个边色图包含F作为子图,并且F的每条边都是不同的颜色,我们就说它包含彩虹F。在不包含彩虹- f的n顶点正确边彩色图中最大化边数的问题,称为彩虹Turán问题,是由Keevash, Mubayi, Sudakov和Verstraëte提出的。我们研究了这个问题的一个变体,附加的限制是图是平面的,我们用exP _ (n,F)表示相应的极值数。特别地,我们确定exP (n,P5),其中P5表示5顶点路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信