Xiaomeng Liu , Enze Zhou , Yongqiang Fan , Fuhui Wang , Dake Xu
{"title":"Riboflavin-mediated extracellular electron transfer enhances microbiologically influenced corrosion of 316L stainless steel by Enterococcus faecalis","authors":"Xiaomeng Liu , Enze Zhou , Yongqiang Fan , Fuhui Wang , Dake Xu","doi":"10.1016/j.bioelechem.2025.108982","DOIUrl":null,"url":null,"abstract":"<div><div>316L stainless steel (SS) is widely used in medical implants due to its excellent mechanical properties. However, the increasing use of metallic implants has made microbiologically influenced corrosion (MIC) a significant safety concern, as it can release harmful metal ions in the body. Despite this risk, research on MIC behavior and mechanisms of 316L SS in the intestinal environment is limited. This study provides novel evidence that <em>Enterococcus faecalis</em>, an intestinal electroactive microorganism, contributes to MIC of 316L SS. MIC occurrence by <em>E. faecalis</em> was confirmed in nutrient-rich media and simulated intestinal fluid, with increased MIC rates under carbon starvation, suggesting an extracellular electron transfer (EET) mechanism. Electrochemical tests and material analyses supported a riboflavin-mediated EET mechanism, indicating that <em>E. faecalis</em> biofilms deteriorate the protective oxide layer on 316L SS through EET, with riboflavin accelerating corrosion. These findings identify EET as the primary mechanism by which <em>E. faecalis</em> enhances MIC in the gut, providing insights into intestinal corrosion risks and guiding the development of corrosion-resistant biomaterials.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"165 ","pages":"Article 108982"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425000854","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
316L stainless steel (SS) is widely used in medical implants due to its excellent mechanical properties. However, the increasing use of metallic implants has made microbiologically influenced corrosion (MIC) a significant safety concern, as it can release harmful metal ions in the body. Despite this risk, research on MIC behavior and mechanisms of 316L SS in the intestinal environment is limited. This study provides novel evidence that Enterococcus faecalis, an intestinal electroactive microorganism, contributes to MIC of 316L SS. MIC occurrence by E. faecalis was confirmed in nutrient-rich media and simulated intestinal fluid, with increased MIC rates under carbon starvation, suggesting an extracellular electron transfer (EET) mechanism. Electrochemical tests and material analyses supported a riboflavin-mediated EET mechanism, indicating that E. faecalis biofilms deteriorate the protective oxide layer on 316L SS through EET, with riboflavin accelerating corrosion. These findings identify EET as the primary mechanism by which E. faecalis enhances MIC in the gut, providing insights into intestinal corrosion risks and guiding the development of corrosion-resistant biomaterials.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.