Mathieu Grandcolas , Annett Thøgersen , Ingeborg-Helene Svenum , Kevin Both , Athanasios Chatzitakis
{"title":"Tantalum nitride photoanodes: a promising future for photoelectrochemical water splitting?","authors":"Mathieu Grandcolas , Annett Thøgersen , Ingeborg-Helene Svenum , Kevin Both , Athanasios Chatzitakis","doi":"10.1016/j.coche.2025.101127","DOIUrl":null,"url":null,"abstract":"<div><div>Photoelectrochemical (PEC) water splitting is a promising method for sustainable hydrogen production. Among potential materials, tantalum nitride (Ta<sub>3</sub>N<sub>5</sub>) has emerged as a leading candidate due to its favorable band gap and high theoretical efficiency. This review highlights recent advancements in the synthesis, doping, and surface modification of Ta<sub>3</sub>N<sub>5</sub> photoanodes, which have enabled photocurrent densities approaching the material’s theoretical limit of 12.9 mA/cm² at 1.23 V vs. RHE. Despite these advancements, significant challenges remain, particularly in achieving long-term stability. We critically evaluate the feasibility of meeting the U.S. Department of Energy’s targets and provide insights into more achievable and realistic goals for PEC systems based on Ta<sub>3</sub>N<sub>5</sub>, focusing on efficiency, lifetime, and cost competitiveness.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101127"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339825000383","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Photoelectrochemical (PEC) water splitting is a promising method for sustainable hydrogen production. Among potential materials, tantalum nitride (Ta3N5) has emerged as a leading candidate due to its favorable band gap and high theoretical efficiency. This review highlights recent advancements in the synthesis, doping, and surface modification of Ta3N5 photoanodes, which have enabled photocurrent densities approaching the material’s theoretical limit of 12.9 mA/cm² at 1.23 V vs. RHE. Despite these advancements, significant challenges remain, particularly in achieving long-term stability. We critically evaluate the feasibility of meeting the U.S. Department of Energy’s targets and provide insights into more achievable and realistic goals for PEC systems based on Ta3N5, focusing on efficiency, lifetime, and cost competitiveness.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.