Decoding the interactions between microplastics, polyfluoroalkyl substances, and endocrine disruptors: sorption kinetics and toxicity

IF 8 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Kanika Dogra , Manish Kumar , Sanyogita Singh , Kanchan Deoli Bahukhandi
{"title":"Decoding the interactions between microplastics, polyfluoroalkyl substances, and endocrine disruptors: sorption kinetics and toxicity","authors":"Kanika Dogra ,&nbsp;Manish Kumar ,&nbsp;Sanyogita Singh ,&nbsp;Kanchan Deoli Bahukhandi","doi":"10.1016/j.coche.2025.101126","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastics (MPs) present a direct threat to aquatic organisms while functioning as vectors for the mobilization of organic contaminants within aquatic environments. Furthermore, due to their extensive usage, per- and polyfluoroalkyl substances (PFAS) and endocrine-disrupting chemicals (EDCs) have emerged as significant global concerns due to their pervasive presence and substantial accumulation in aquatic ecosystems. Research to date has primarily focused on these contaminants in isolation, leaving the interactions and cumulative effects among MPs, PFAS, and EDCs (trifecta) relatively unexamined. We elucidate the probable interaction mechanisms among these three categories of contaminants and to analyze their combined toxicity, as well as the existing regulatory frameworks and policies applicable to them. Our findings indicate that the sorption of EDCs and PFAS onto MPs is predominantly governed by hydrophobic and electrostatic forces and is sensitive to various environmental parameters, including pH, salinity, temperature, and dissolved organic matter. The interactions among these contaminants are intricate, encompassing mechanisms such as cation-π bonding and biofilm formation, all of which influence the dynamics of sorption. The synergistic effects of MPs in conjunction with co-contaminants, such as PFAS and EDCs, exacerbate toxicity, promote bioaccumulation, and elevate health risks for both aquatic organisms and mammals, typically contingent upon factors such as exposure duration, dosage, and environmental conditions. In conclusion, we underscore that while significant advancements have been achieved, considerable efforts are still required to address regulatory deficiencies and to advance legislation aimed at mitigating the impact of persistent pollutants.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101126"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339825000371","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastics (MPs) present a direct threat to aquatic organisms while functioning as vectors for the mobilization of organic contaminants within aquatic environments. Furthermore, due to their extensive usage, per- and polyfluoroalkyl substances (PFAS) and endocrine-disrupting chemicals (EDCs) have emerged as significant global concerns due to their pervasive presence and substantial accumulation in aquatic ecosystems. Research to date has primarily focused on these contaminants in isolation, leaving the interactions and cumulative effects among MPs, PFAS, and EDCs (trifecta) relatively unexamined. We elucidate the probable interaction mechanisms among these three categories of contaminants and to analyze their combined toxicity, as well as the existing regulatory frameworks and policies applicable to them. Our findings indicate that the sorption of EDCs and PFAS onto MPs is predominantly governed by hydrophobic and electrostatic forces and is sensitive to various environmental parameters, including pH, salinity, temperature, and dissolved organic matter. The interactions among these contaminants are intricate, encompassing mechanisms such as cation-π bonding and biofilm formation, all of which influence the dynamics of sorption. The synergistic effects of MPs in conjunction with co-contaminants, such as PFAS and EDCs, exacerbate toxicity, promote bioaccumulation, and elevate health risks for both aquatic organisms and mammals, typically contingent upon factors such as exposure duration, dosage, and environmental conditions. In conclusion, we underscore that while significant advancements have been achieved, considerable efforts are still required to address regulatory deficiencies and to advance legislation aimed at mitigating the impact of persistent pollutants.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Chemical Engineering
Current Opinion in Chemical Engineering BIOTECHNOLOGY & APPLIED MICROBIOLOGYENGINE-ENGINEERING, CHEMICAL
CiteScore
12.80
自引率
3.00%
发文量
114
期刊介绍: Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published. The goals of each review article in Current Opinion in Chemical Engineering are: 1. To acquaint the reader/researcher with the most important recent papers in the given topic. 2. To provide the reader with the views/opinions of the expert in each topic. The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts. Themed sections: Each review will focus on particular aspects of one of the following themed sections of chemical engineering: 1. Nanotechnology 2. Energy and environmental engineering 3. Biotechnology and bioprocess engineering 4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery) 5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.) 6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials). 7. Process systems engineering 8. Reaction engineering and catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信