Finite time blowup and type II rate for harmonic heat flow from Riemannian manifolds

IF 1.7 2区 数学 Q1 MATHEMATICS
Shi-Zhong Du
{"title":"Finite time blowup and type II rate for harmonic heat flow from Riemannian manifolds","authors":"Shi-Zhong Du","doi":"10.1016/j.jfa.2025.110972","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> be a <em>m</em> dimensional Riemannian manifold with metric <em>g</em> and <span><math><mo>(</mo><mi>N</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span> be a <em>n</em> dimensional Riemannian sub-manifold of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> with induced metric <em>h</em>. In this paper, we will study the existence of finite time singularity to harmonic heat flow<span><span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><msub><mrow><mo>△</mo></mrow><mrow><mi>g</mi></mrow></msub><mi>u</mi><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>(</mo><mi>∇</mi><mi>u</mi><mo>,</mo><mi>∇</mi><mi>u</mi><mo>)</mo></math></span></span></span> and their formation patterns.</div><div>After works of Coron-Ghidaglia <span><span>[10]</span></span>, Ding <span><span>[11]</span></span> and Chen-Ding <span><span>[5]</span></span>, one knows blow-up solutions under smallness of initial energy for <span><math><mi>m</mi><mo>≥</mo><mn>3</mn></math></span>. Soon later, 2 dimensional blowup solutions were found by Chang-Ding-Ye in <span><span>[8]</span></span>. The first part of this paper is devoted to construction of new examples of finite time blow-up solutions without smallness conditions for <span><math><mn>3</mn><mo>≤</mo><mi>m</mi><mo>&lt;</mo><mn>7</mn></math></span>. In fact, when considering rotational symmetric harmonic heat flow from <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> to <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>, we will prove that the maximal solution blows up in finite time if <span><math><mi>b</mi><mo>&gt;</mo><msub><mrow><mi>ϑ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, and exists for all time if <span><math><mn>0</mn><mo>&lt;</mo><mi>b</mi><mo>&lt;</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. This result can be regarded as a generalization of results of Chang-Ding-Ye <span><span>[8]</span></span> and Chang-Ding <span><span>[6]</span></span> to higher dimensional case, which relies on a completely different argument. The second part of the paper study the rate of blow-up solutions. When <em>M</em> is a bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and consider Dirichlet boundary condition on ∂<em>M</em>, Hamilton (mentioned by Chang-Ding-Ye in <span><span>[8]</span></span>) has obtained that the blowup rate must be faster than <span><math><msup><mrow><mo>(</mo><mi>T</mi><mo>−</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. Under a similar setting, it was later improved a little by Topping <span><span>[23]</span></span> to <span><math><msup><mrow><mo>(</mo><mi>T</mi><mo>−</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>|</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>T</mi><mo>−</mo><mi>t</mi><mo>)</mo><mo>|</mo></math></span>. In this paper, we will extend the results to all Riemannian surfaces <em>M</em> and improve the rate of Topping to <span><math><msup><mrow><mo>(</mo><mi>T</mi><mo>−</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>a</mi><mo>(</mo><mo>|</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>T</mi><mo>−</mo><mi>t</mi><mo>)</mo><mo>|</mo><mo>)</mo></math></span> for any positive nondecreasing function <span><math><mi>a</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> satisfying<span><span><span><math><munderover><mo>∫</mo><mrow><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mfrac><mrow><mi>d</mi><mi>τ</mi></mrow><mrow><mi>a</mi><mo>(</mo><mi>τ</mi><mo>)</mo></mrow></mfrac><mo>=</mo><mo>+</mo><mo>∞</mo><mo>,</mo></math></span></span></span> which is comparable to a recent result of Raphaël-Schweyer <span><span>[20]</span></span> for rotational symmetric solutions. Turning to the higher dimensional case <span><math><mn>3</mn><mo>≤</mo><mi>m</mi><mo>&lt;</mo><mn>7</mn></math></span>, we will demonstrate a completely different phenomenon by showing that all rotational symmetric blow-up solutions can not be type II, which is different to the result of <span><math><mi>m</mi><mo>≥</mo><mn>7</mn></math></span> by Bizoń-Wasserman <span><span>[4]</span></span>. Finally, we also present result of finite time type I blowup for heat flow from <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> to <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>, when <span><math><mn>3</mn><mo>≤</mo><mi>m</mi><mo>&lt;</mo><mn>7</mn></math></span> and degree is no less than 2.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 110972"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001545","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let (M,g) be a m dimensional Riemannian manifold with metric g and (N,h) be a n dimensional Riemannian sub-manifold of Rk with induced metric h. In this paper, we will study the existence of finite time singularity to harmonic heat flowutgu=Au(u,u) and their formation patterns.
After works of Coron-Ghidaglia [10], Ding [11] and Chen-Ding [5], one knows blow-up solutions under smallness of initial energy for m3. Soon later, 2 dimensional blowup solutions were found by Chang-Ding-Ye in [8]. The first part of this paper is devoted to construction of new examples of finite time blow-up solutions without smallness conditions for 3m<7. In fact, when considering rotational symmetric harmonic heat flow from B1Rm to SmRm+1, we will prove that the maximal solution blows up in finite time if b>ϑm, and exists for all time if 0<b<π2. This result can be regarded as a generalization of results of Chang-Ding-Ye [8] and Chang-Ding [6] to higher dimensional case, which relies on a completely different argument. The second part of the paper study the rate of blow-up solutions. When M is a bounded domain in R2 and consider Dirichlet boundary condition on ∂M, Hamilton (mentioned by Chang-Ding-Ye in [8]) has obtained that the blowup rate must be faster than (Tt)1. Under a similar setting, it was later improved a little by Topping [23] to (Tt)1|log(Tt)|. In this paper, we will extend the results to all Riemannian surfaces M and improve the rate of Topping to (Tt)1a(|log(Tt)|) for any positive nondecreasing function a(τ) satisfying1dτa(τ)=+, which is comparable to a recent result of Raphaël-Schweyer [20] for rotational symmetric solutions. Turning to the higher dimensional case 3m<7, we will demonstrate a completely different phenomenon by showing that all rotational symmetric blow-up solutions can not be type II, which is different to the result of m7 by Bizoń-Wasserman [4]. Finally, we also present result of finite time type I blowup for heat flow from Sm to SmRm+1, when 3m<7 and degree is no less than 2.
黎曼流形谐波热流的有限时间爆破和II型速率
设(M,g)为带度量g的M维黎曼流形,(N,h)为带诱导度量h的Rk的N维黎曼子流形。本文将研究谐波热流-△gu=Au(∇u,∇u)的有限时间奇点的存在性及其形成模式。通过Coron-Ghidaglia[10]、Ding[11]和Chen-Ding[5]的工作,我们知道了m≥3初始能量小条件下的爆破解。不久之后,叶昌定(Chang-Ding-Ye)在1986年发现了二维放大解。本文第一部分构造了3≤m<时无小条件的有限时间爆破解的新实例;事实上,当考虑从B1∧Rm到Sm∧Rm+1的旋转对称调和热流时,我们将证明极大解在有限时间内爆炸,如果>;ϑm,如果π为0<; <π2,则存在于所有时间。这个结果可以看作是将Chang-Ding- ye[8]和Chang-Ding[6]的结果推广到更高维度的情况,它依赖于一个完全不同的论证。论文的第二部分研究了爆破解的速率。当M是R2中的有界域时,考虑∂M上的Dirichlet边界条件,Hamilton (Chang-Ding-Ye在[8]中提到)得到了爆炸速率必须大于(T−T)−1。在类似的设置下,后来又稍微改进了一下,将[23]提高到(T−T)−1|log (T−T)|。在本文中,我们将结果推广到所有黎曼曲面M,并将任意满足∫1∞dτa(τ)=+∞的正非降函数a(τ)的Topping率提高到(T−T)−1a(|log (T−T)|),这与最近关于旋转对称解的Raphaël-Schweyer[20]的结果相当。转到高维情况3≤m<;7,我们将证明一个完全不同的现象,通过Bizoń-Wasserman[4]证明所有旋转对称爆破解都不可能是II型,这与m≥7的结果不同。最后,我们还给出了从Sm到Sm∧Rm+1的热流在3≤m<;7且度不小于2时的有限时间I型爆破结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信