Quenched large deviation principles for random projections of ℓpn balls

IF 1.7 2区 数学 Q1 MATHEMATICS
Patrick Lopatto, Kavita Ramanan, Xiaoyu Xie
{"title":"Quenched large deviation principles for random projections of ℓpn balls","authors":"Patrick Lopatto,&nbsp;Kavita Ramanan,&nbsp;Xiaoyu Xie","doi":"10.1016/j.jfa.2025.110937","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> be a sequence of positive integers growing to infinity at a sublinear rate, <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><mo>∞</mo></math></span> and <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><mi>n</mi><mo>→</mo><mn>0</mn></math></span> as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>. Given a sequence of <em>n</em>-dimensional random vectors <span><math><msub><mrow><mo>{</mo><msup><mrow><mi>Y</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> belonging to a certain class, which includes uniform distributions on suitably scaled <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>-balls or <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>-spheres, <span><math><mi>p</mi><mo>≥</mo><mn>2</mn></math></span>, and product distributions with sub-Gaussian marginals, we study the large deviations behavior of the corresponding sequence of <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-dimensional orthogonal projections <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mo>,</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub><msup><mrow><mi>Y</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>, where <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mo>,</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub></math></span> is an <span><math><mo>(</mo><mi>n</mi><mo>×</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>-dimensional projection matrix lying in the Stiefel manifold of orthonormal <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-frames in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. For almost every sequence of projection matrices, we establish a large deviation principle (LDP) for the corresponding sequence of projections, with a fairly explicit rate function that does not depend on the sequence of projection matrices. As corollaries, we also obtain quenched LDPs for sequences of <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-norms and <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-norms of the coordinates of the projections. Past work on LDPs for projections with growing dimension has mainly focused on the annealed setting, where one also averages over the random projection matrix, chosen from the Haar measure, in which case the coordinates of the projection are exchangeable. The quenched setting lacks such symmetry properties, and gives rise to significant new challenges in the setting of growing projection dimension. Along the way, we establish new Gaussian approximation results on the Stiefel manifold that may be of independent interest. Such LDPs are of relevance in asymptotic convex geometry, statistical physics and high-dimensional statistics.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 110937"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001193","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let (kn)nN be a sequence of positive integers growing to infinity at a sublinear rate, kn and kn/n0 as n. Given a sequence of n-dimensional random vectors {Y(n)}nN belonging to a certain class, which includes uniform distributions on suitably scaled pn-balls or pn-spheres, p2, and product distributions with sub-Gaussian marginals, we study the large deviations behavior of the corresponding sequence of kn-dimensional orthogonal projections n1/2an,knY(n) as n, where an,kn is an (n×kn)-dimensional projection matrix lying in the Stiefel manifold of orthonormal kn-frames in Rn. For almost every sequence of projection matrices, we establish a large deviation principle (LDP) for the corresponding sequence of projections, with a fairly explicit rate function that does not depend on the sequence of projection matrices. As corollaries, we also obtain quenched LDPs for sequences of 2-norms and -norms of the coordinates of the projections. Past work on LDPs for projections with growing dimension has mainly focused on the annealed setting, where one also averages over the random projection matrix, chosen from the Haar measure, in which case the coordinates of the projection are exchangeable. The quenched setting lacks such symmetry properties, and gives rise to significant new challenges in the setting of growing projection dimension. Along the way, we establish new Gaussian approximation results on the Stiefel manifold that may be of independent interest. Such LDPs are of relevance in asymptotic convex geometry, statistical physics and high-dimensional statistics.
lpn球随机投影的淬火大偏差原理
设(kn)n∈n是一个正整数序列,以次线性的速度增长到无穷,kn→∞,kn/n→0为n→∞。给定一类n维随机向量序列{Y(n)}n∈n,其中包含适当缩放的n- pn球或n- pn球上的均匀分布,p≥2,以及具有亚高斯边际的积分布,我们研究了相应的n维正交投影序列n−1/2an,knY(n)为n→∞,其中an,kn为Rn中标准正交n-帧Stiefel流形中的(n×kn)维投影矩阵的大偏差行为。对于几乎每一个投影矩阵序列,我们都建立了对应投影序列的大偏差原理(LDP),并给出了一个不依赖于投影矩阵序列的相当明确的速率函数。作为推论,我们也得到了投影坐标的2-范数和∞-范数序列的淬灭LDPs。过去关于增加维度的投影的LDPs的工作主要集中在退火设置上,其中还对从哈尔测度中选择的随机投影矩阵进行平均,在这种情况下,投影的坐标是可以交换的。淬火设置缺乏这种对称性,并且在投影维数增加的设置中提出了重大的新挑战。在此过程中,我们在Stiefel流形上建立了新的高斯近似结果,这可能是独立的兴趣。这种ldp在渐近凸几何、统计物理和高维统计中具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信