Gabriele Galletti , Davide Allkanjari , Alessandro Manna , Elisa Valzano , Lorenzo Monti , Nikolaos Dimitratos , Jacopo De Maron , Fabrizio Cavani , Tommaso Tabanelli
{"title":"Zinc-based oxides as alternative cheap and stable catalysts for the production of adipates from cyclopentanone and dimethyl carbonate","authors":"Gabriele Galletti , Davide Allkanjari , Alessandro Manna , Elisa Valzano , Lorenzo Monti , Nikolaos Dimitratos , Jacopo De Maron , Fabrizio Cavani , Tommaso Tabanelli","doi":"10.1016/j.scp.2025.102018","DOIUrl":null,"url":null,"abstract":"<div><div>Developing sustainable catalytic processes for specialty monomers is essential for advancing a renewable-based economy. Adipic acid esters, such as dimethyl adipate (DMA), are key intermediates in polyester and polyamide production and can be synthesized with complete atom economy (100 %) through the reaction of bio-based cyclopentanone (CPO) with dimethyl carbonate (DMC) or other CO<sub>2</sub>-derived carbonates. This study evaluates, for the first time, the catalytic performance of ZnO and Zn/Mg mixed oxides for this transformation. ZnO exhibited superior selectivity for DMA (53 %), compared to conventional MgO and CeO<sub>2</sub> catalysts by effectively suppressing heavy by-product formation, thereby inhibiting CPO self-aldol condensation. This suppression minimizes catalyst fouling, allowing ZnO to be easily and readily recovered and reused without significant loss of activity. In contrast, Zn/Mg/O mixed oxides enhanced reaction rates but led to lower selectivity, primarily producing branched methylated adipates, which could serve as alternative polymer precursors. Optimization of catalyst composition and reaction conditions was critical for maximizing diester yields in this one-pot transformation, selectivity producing DMA over ZnO (up to 48 % yield after 7 h of reaction) or DMA and methylated DMAs (with yields higher than 40 % after 3 h of reaction in the presence of Zn/Mg/O). However, dedicated studies on the β-keto-ester intermediate revealed that methanol availability over the catalytic surface at the temperature required for the “one-pot” process (i.e. 260 °C) is a limiting factor. This constraint can reduce DMA yield and productivity due to the unselective decomposition of the intermediate, highlighting an area for further process refinement.</div></div>","PeriodicalId":22138,"journal":{"name":"Sustainable Chemistry and Pharmacy","volume":"45 ","pages":"Article 102018"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry and Pharmacy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352554125001160","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing sustainable catalytic processes for specialty monomers is essential for advancing a renewable-based economy. Adipic acid esters, such as dimethyl adipate (DMA), are key intermediates in polyester and polyamide production and can be synthesized with complete atom economy (100 %) through the reaction of bio-based cyclopentanone (CPO) with dimethyl carbonate (DMC) or other CO2-derived carbonates. This study evaluates, for the first time, the catalytic performance of ZnO and Zn/Mg mixed oxides for this transformation. ZnO exhibited superior selectivity for DMA (53 %), compared to conventional MgO and CeO2 catalysts by effectively suppressing heavy by-product formation, thereby inhibiting CPO self-aldol condensation. This suppression minimizes catalyst fouling, allowing ZnO to be easily and readily recovered and reused without significant loss of activity. In contrast, Zn/Mg/O mixed oxides enhanced reaction rates but led to lower selectivity, primarily producing branched methylated adipates, which could serve as alternative polymer precursors. Optimization of catalyst composition and reaction conditions was critical for maximizing diester yields in this one-pot transformation, selectivity producing DMA over ZnO (up to 48 % yield after 7 h of reaction) or DMA and methylated DMAs (with yields higher than 40 % after 3 h of reaction in the presence of Zn/Mg/O). However, dedicated studies on the β-keto-ester intermediate revealed that methanol availability over the catalytic surface at the temperature required for the “one-pot” process (i.e. 260 °C) is a limiting factor. This constraint can reduce DMA yield and productivity due to the unselective decomposition of the intermediate, highlighting an area for further process refinement.
期刊介绍:
Sustainable Chemistry and Pharmacy publishes research that is related to chemistry, pharmacy and sustainability science in a forward oriented manner. It provides a unique forum for the publication of innovative research on the intersection and overlap of chemistry and pharmacy on the one hand and sustainability on the other hand. This includes contributions related to increasing sustainability of chemistry and pharmaceutical science and industries itself as well as their products in relation to the contribution of these to sustainability itself. As an interdisciplinary and transdisciplinary journal it addresses all sustainability related issues along the life cycle of chemical and pharmaceutical products form resource related topics until the end of life of products. This includes not only natural science based approaches and issues but also from humanities, social science and economics as far as they are dealing with sustainability related to chemistry and pharmacy. Sustainable Chemistry and Pharmacy aims at bridging between disciplines as well as developing and developed countries.