Random root distribution affects the mechanical properties of the soil-root composite and root reinforcement

IF 5.4 1区 农林科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Jian-kun Huang , Jing-pei Dai , Fabrizio Scarpa , Yun-qi Wang , Jin-nan Ji , Zhun Mao
{"title":"Random root distribution affects the mechanical properties of the soil-root composite and root reinforcement","authors":"Jian-kun Huang ,&nbsp;Jing-pei Dai ,&nbsp;Fabrizio Scarpa ,&nbsp;Yun-qi Wang ,&nbsp;Jin-nan Ji ,&nbsp;Zhun Mao","doi":"10.1016/j.catena.2025.108896","DOIUrl":null,"url":null,"abstract":"<div><div>Roots can mechanically reinforce soils against landslides, but the impact of their typically random and complex distribution on this reinforcement is not well understood. Here, using a modelling approach based on homogenization theory, we aim to assess the effect of the randomness and complexity of root spatial distribution in soils on the mechanical properties of the soil-root composite and the resulting reinforcement. To do this, we modeled the soil-root composite as a three-dimensional (3D) soil column through which parallel roots penetrate vertically. The unit cell (UC) of the soil-root composites with a nonuniform root distribution was created based on the characteristics of root diameter distributions of <em>Elymus dahuricus</em> measured in the field, and the equivalent elastic modulus and strength parameters of the composites were calculated. The accuracy of the homogenization method was verified by direct shear tests with undisturbed soil-root samples. The results showed that the UC model of the soil-root composites could effectively predict its equivalent elastic parameters. A parametric analysis using the proposed homogenization model showed that roots can mobilize significant soil portions to resist deformation by increasing both the number and complexity of root distributions, even at the same root volume ratio. This makes the stress distribution in the soil more uniform and improves the shear strength of the soil-root composites. The presence of <em>Elymus dahuricus</em> roots significantly improved the shear strength of the soil-root composites, primarily due to an increase in cohesion of 23%. This study presents a new perspective on the development of a constitutive model for soil-root composites and highlights its potential value for engineering applications that use roots to reinforce soils.</div></div>","PeriodicalId":9801,"journal":{"name":"Catena","volume":"255 ","pages":"Article 108896"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catena","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0341816225001985","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Roots can mechanically reinforce soils against landslides, but the impact of their typically random and complex distribution on this reinforcement is not well understood. Here, using a modelling approach based on homogenization theory, we aim to assess the effect of the randomness and complexity of root spatial distribution in soils on the mechanical properties of the soil-root composite and the resulting reinforcement. To do this, we modeled the soil-root composite as a three-dimensional (3D) soil column through which parallel roots penetrate vertically. The unit cell (UC) of the soil-root composites with a nonuniform root distribution was created based on the characteristics of root diameter distributions of Elymus dahuricus measured in the field, and the equivalent elastic modulus and strength parameters of the composites were calculated. The accuracy of the homogenization method was verified by direct shear tests with undisturbed soil-root samples. The results showed that the UC model of the soil-root composites could effectively predict its equivalent elastic parameters. A parametric analysis using the proposed homogenization model showed that roots can mobilize significant soil portions to resist deformation by increasing both the number and complexity of root distributions, even at the same root volume ratio. This makes the stress distribution in the soil more uniform and improves the shear strength of the soil-root composites. The presence of Elymus dahuricus roots significantly improved the shear strength of the soil-root composites, primarily due to an increase in cohesion of 23%. This study presents a new perspective on the development of a constitutive model for soil-root composites and highlights its potential value for engineering applications that use roots to reinforce soils.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catena
Catena 环境科学-地球科学综合
CiteScore
10.50
自引率
9.70%
发文量
816
审稿时长
54 days
期刊介绍: Catena publishes papers describing original field and laboratory investigations and reviews on geoecology and landscape evolution with emphasis on interdisciplinary aspects of soil science, hydrology and geomorphology. It aims to disseminate new knowledge and foster better understanding of the physical environment, of evolutionary sequences that have resulted in past and current landscapes, and of the natural processes that are likely to determine the fate of our terrestrial environment. Papers within any one of the above topics are welcome provided they are of sufficiently wide interest and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信