Na-Im Kim , Jeong-Moo Lee , Jong-Sin Moon , Jung-Wook Wee
{"title":"Characterization and modeling of weathering degradation of PC/ABS blend in various temperature and humidity conditions","authors":"Na-Im Kim , Jeong-Moo Lee , Jong-Sin Moon , Jung-Wook Wee","doi":"10.1016/j.polymdegradstab.2025.111364","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the accelerated degradation tests were conducted on PC/ABS blend (50:50) under various combinations of temperature and humidity, 85 °C-85 %RH, 85 °C-45 %RH, 75 °C-65 %RH, 85 °C-dry, 95 °C-dry, and 105 °C-dry conditions. The generation of surface damages were observed in detail, and a quantitative degree of degradation was defined based on the spectroscopic analysis. Also, the master curves correlating the degree of degradation with mechanical properties were constructed. The prediction model for degradation degree and mechanical properties under arbitrary temperature and humidity condition was suggested based on the degradation kinetics, and it was utilized to estimate the degradation behavior of field-weathered samples for 6 months. Based on this study, it is believed that the degradation behavior of PC/ABS blend under a wide range of weathering conditions can be predicted accurately by suggested protocol, and the reliable application potential of PC/ABS blends for various industrial areas is enhanced.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"238 ","pages":"Article 111364"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391025001946","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the accelerated degradation tests were conducted on PC/ABS blend (50:50) under various combinations of temperature and humidity, 85 °C-85 %RH, 85 °C-45 %RH, 75 °C-65 %RH, 85 °C-dry, 95 °C-dry, and 105 °C-dry conditions. The generation of surface damages were observed in detail, and a quantitative degree of degradation was defined based on the spectroscopic analysis. Also, the master curves correlating the degree of degradation with mechanical properties were constructed. The prediction model for degradation degree and mechanical properties under arbitrary temperature and humidity condition was suggested based on the degradation kinetics, and it was utilized to estimate the degradation behavior of field-weathered samples for 6 months. Based on this study, it is believed that the degradation behavior of PC/ABS blend under a wide range of weathering conditions can be predicted accurately by suggested protocol, and the reliable application potential of PC/ABS blends for various industrial areas is enhanced.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.