Effect of the Spraying Process on Corrosion Resistance and Durability of Al-5Mg Coating on Carbon Steel: A Comparison of Transferred Arc Plasma Spraying and Flame Spraying Methods

IF 5.7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Qidi Wang , Shigenobu Kainuma , Yingrui Ju , Aran Kim , Tomoaki Nishitani
{"title":"Effect of the Spraying Process on Corrosion Resistance and Durability of Al-5Mg Coating on Carbon Steel: A Comparison of Transferred Arc Plasma Spraying and Flame Spraying Methods","authors":"Qidi Wang ,&nbsp;Shigenobu Kainuma ,&nbsp;Yingrui Ju ,&nbsp;Aran Kim ,&nbsp;Tomoaki Nishitani","doi":"10.1016/j.surfin.2025.106377","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the corrosion resistance and durability of Al-5Mg coatings deposited by transferred arc plasma spraying (TAPS) and flame spraying (FS) methods. The corrosion performance was evaluated through a 6000-hour accelerated corrosion test, complemented by electrochemical impedance spectroscopy and polarization measurements. The TAPS coating exhibited significantly lower initial porosity of 3.78%, reducing further to 1.09% after 1000 corrosion cycles, compared to the FS coating with an initial porosity of 9.93%, decreasing to 5.46%. Electrochemical tests revealed a lower corrosion current density in the TAPS coating (1.90 μA/cm²) than in the FS coating (2.54 μA/cm²) after 1000 cycles, indicating a superior corrosion resistance of the TAPS coating. Additionally, adhesion strength measurements indicated that the TAPS coating exhibited approximately 20% higher adhesion strength compared to the FS coating, further enhancing its durability and mechanical reliability. The enhanced performance of TAPS is attributed primarily to its dense and uniform pore structure and the resultant formation of a compact, protective oxide passive layer, effectively inhibiting electrolyte penetration. Overlay tests further confirmed that TAPS coatings exhibited significantly reduced blistering under linear defect conditions. These findings suggest that the TAPS process is a highly effective method for enhancing the corrosion protection of Al-5Mg coatings on complex steel structures.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"64 ","pages":"Article 106377"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023025006352","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the corrosion resistance and durability of Al-5Mg coatings deposited by transferred arc plasma spraying (TAPS) and flame spraying (FS) methods. The corrosion performance was evaluated through a 6000-hour accelerated corrosion test, complemented by electrochemical impedance spectroscopy and polarization measurements. The TAPS coating exhibited significantly lower initial porosity of 3.78%, reducing further to 1.09% after 1000 corrosion cycles, compared to the FS coating with an initial porosity of 9.93%, decreasing to 5.46%. Electrochemical tests revealed a lower corrosion current density in the TAPS coating (1.90 μA/cm²) than in the FS coating (2.54 μA/cm²) after 1000 cycles, indicating a superior corrosion resistance of the TAPS coating. Additionally, adhesion strength measurements indicated that the TAPS coating exhibited approximately 20% higher adhesion strength compared to the FS coating, further enhancing its durability and mechanical reliability. The enhanced performance of TAPS is attributed primarily to its dense and uniform pore structure and the resultant formation of a compact, protective oxide passive layer, effectively inhibiting electrolyte penetration. Overlay tests further confirmed that TAPS coatings exhibited significantly reduced blistering under linear defect conditions. These findings suggest that the TAPS process is a highly effective method for enhancing the corrosion protection of Al-5Mg coatings on complex steel structures.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Surfaces and Interfaces
Surfaces and Interfaces Chemistry-General Chemistry
CiteScore
8.50
自引率
6.50%
发文量
753
审稿时长
35 days
期刊介绍: The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results. Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信