Regional Characteristics in Ultradeep MXene Slit Nanopores: Insights from Molecular Dynamics Simulation

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Kaiqing Sun, Daqian Wang, Guohui Zhou, Xiaomin Liu
{"title":"Regional Characteristics in Ultradeep MXene Slit Nanopores: Insights from Molecular Dynamics Simulation","authors":"Kaiqing Sun, Daqian Wang, Guohui Zhou, Xiaomin Liu","doi":"10.1021/acs.langmuir.5c00435","DOIUrl":null,"url":null,"abstract":"The presence of slit nanopores in MXene materials inevitably influences the electrochemical performance of supercapacitor electrodes. However, most studies focus on experimental approaches, lacking microscopic-scale analysis. Here, we performed molecular dynamics (MD) simulations to thoroughly analyze and predict the ion transport pathways and energy storage mechanisms of MXene/ionic liquid (IL) supercapacitors with ultradeep slit nanopores. The simulation results indicate that during the charging process, counterions migrate from the bulk region into the electrode pores, forming a counterion layer near the electrode surface, while some co-ions gradually exit the pores. When charging is completed, a distinct ion layering structure emerges. As the interlayer spacing varies, the ion distribution in the electrode pores exhibits regional characteristics: in the ordered region near the bulk region, a stable electrical double-layer (EDL) structure is maintained, whereas in the deeper mixed region, persistent co-ion presence and significant disorder are observed. Dominated by the mixed region, the total energy variation of the electrode decreases as the interlayer spacing decreases, with energy changes of 8526.52, 7443.52, and 6640.99 kJ·mol<sup>–1</sup> at interlayer spacings of 1.2, 1.0, and 0.8 nm, respectively, representing reductions of approximately 12.7 and 22.1% compared to 1.2 nm. In the mixed region, after compensating for the interaction between counterions, the contribution of the interaction between counterions and electrode increases with decreasing interlayer spacing, reaching 123, 153, and 176% at 1.2, 1.0, and 0.8 nm, respectively. An increasing amount of energy is offset by interactions related to the co-ions, ultimately leading to the observed energy differences. These findings offer new insights into the impact of nanopore structure on supercapacitor performance and provide theoretical guidance for optimizing electrode design.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"74 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c00435","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of slit nanopores in MXene materials inevitably influences the electrochemical performance of supercapacitor electrodes. However, most studies focus on experimental approaches, lacking microscopic-scale analysis. Here, we performed molecular dynamics (MD) simulations to thoroughly analyze and predict the ion transport pathways and energy storage mechanisms of MXene/ionic liquid (IL) supercapacitors with ultradeep slit nanopores. The simulation results indicate that during the charging process, counterions migrate from the bulk region into the electrode pores, forming a counterion layer near the electrode surface, while some co-ions gradually exit the pores. When charging is completed, a distinct ion layering structure emerges. As the interlayer spacing varies, the ion distribution in the electrode pores exhibits regional characteristics: in the ordered region near the bulk region, a stable electrical double-layer (EDL) structure is maintained, whereas in the deeper mixed region, persistent co-ion presence and significant disorder are observed. Dominated by the mixed region, the total energy variation of the electrode decreases as the interlayer spacing decreases, with energy changes of 8526.52, 7443.52, and 6640.99 kJ·mol–1 at interlayer spacings of 1.2, 1.0, and 0.8 nm, respectively, representing reductions of approximately 12.7 and 22.1% compared to 1.2 nm. In the mixed region, after compensating for the interaction between counterions, the contribution of the interaction between counterions and electrode increases with decreasing interlayer spacing, reaching 123, 153, and 176% at 1.2, 1.0, and 0.8 nm, respectively. An increasing amount of energy is offset by interactions related to the co-ions, ultimately leading to the observed energy differences. These findings offer new insights into the impact of nanopore structure on supercapacitor performance and provide theoretical guidance for optimizing electrode design.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信