Boron Doping-Induced Ultrahigh Ce3+ Ratio in Amorphous CeO2/GO Catalyst for Low-Concentration CO2 Photoreduction

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yanhong Li, Qian Yin, Binbin Jia, Huiqing Wang, Hongfei Gu, Qi Hu, Haosen Yang, Tianqi Guo, Pengfei Hu, Lidong Li, Li-Min Liu, Lin Guo
{"title":"Boron Doping-Induced Ultrahigh Ce3+ Ratio in Amorphous CeO2/GO Catalyst for Low-Concentration CO2 Photoreduction","authors":"Yanhong Li, Qian Yin, Binbin Jia, Huiqing Wang, Hongfei Gu, Qi Hu, Haosen Yang, Tianqi Guo, Pengfei Hu, Lidong Li, Li-Min Liu, Lin Guo","doi":"10.1002/anie.202505668","DOIUrl":null,"url":null,"abstract":"Direct utilization of diluted CO2 enables sustainable CO2 conversion into valuable products, with reduced CeO2 emerging as an attractive candidate due to its exceptional redox flexibility. The catalytic efficacy of CeO2 is intimately tied to the electronic structure of 4f, yet the persistent challenge lies in maintaining a high and stable concentration of Ce3+. In this study, we propose a symmetry-breaking-induced amorphization strategy to achieve an exceptionally high Ce3+ ratio by B doping, which facilitates the reduction of Ce4+ to Ce3+ in amorphous CeO2. First-principles calculations and infrared spectroscopy reveal that B doping with three excess electrons induces the formation of planar triangular B-O₃ units by disrupting the original high-symmetry structure of CeO2, facilitating the spontaneous transition to the amorphous phase. Electronic structure analysis confirms that even a modest 7.5% B doping can significantly elevate the Ce3+ ratio to 85.7%. The resulting amorphous B-doped CeO2/GO shows a remarkable CO2-to-CO conversion rate of 249.33 µmol g-1 h-1(under 15% CO2) and 103.4 µmol g-1 h-1(under 1% CO2), with 100% selectivity in both cases. This performance highlights how amorphization stabilizes defect states, making amorphous CeO2/GO with high Ce3+ an effective material for CO2 photoreduction and addressing key challenges in CO2 capture and utilization.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"89 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202505668","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Direct utilization of diluted CO2 enables sustainable CO2 conversion into valuable products, with reduced CeO2 emerging as an attractive candidate due to its exceptional redox flexibility. The catalytic efficacy of CeO2 is intimately tied to the electronic structure of 4f, yet the persistent challenge lies in maintaining a high and stable concentration of Ce3+. In this study, we propose a symmetry-breaking-induced amorphization strategy to achieve an exceptionally high Ce3+ ratio by B doping, which facilitates the reduction of Ce4+ to Ce3+ in amorphous CeO2. First-principles calculations and infrared spectroscopy reveal that B doping with three excess electrons induces the formation of planar triangular B-O₃ units by disrupting the original high-symmetry structure of CeO2, facilitating the spontaneous transition to the amorphous phase. Electronic structure analysis confirms that even a modest 7.5% B doping can significantly elevate the Ce3+ ratio to 85.7%. The resulting amorphous B-doped CeO2/GO shows a remarkable CO2-to-CO conversion rate of 249.33 µmol g-1 h-1(under 15% CO2) and 103.4 µmol g-1 h-1(under 1% CO2), with 100% selectivity in both cases. This performance highlights how amorphization stabilizes defect states, making amorphous CeO2/GO with high Ce3+ an effective material for CO2 photoreduction and addressing key challenges in CO2 capture and utilization.
硼掺杂诱导非晶态CeO2/GO催化剂中超高Ce3+比例的低浓度CO2光还原
直接利用稀释后的二氧化碳可以将二氧化碳可持续地转化为有价值的产品,由于其出色的氧化还原灵活性,还原型CeO2成为有吸引力的候选产品。CeO2的催化效果与4f的电子结构密切相关,但持续的挑战在于保持高且稳定的Ce3+浓度。在本研究中,我们提出了一种对称断裂诱导的非晶化策略,通过B掺杂实现了异常高的Ce3+比率,这有助于将非晶CeO2中的Ce4+还原为Ce3+。第一性原理计算和红外光谱分析表明,3个多余电子的B掺杂破坏了CeO2原有的高对称结构,诱导形成了平面三角形的B- o₃单元,促进了CeO2自发向非晶态过渡。电子结构分析证实,即使是适度的7.5% B掺杂也能显著提高Ce3+的比率至85.7%。得到的无定形b掺杂CeO2/GO的CO2-to- co转化率为249.33µmol g-1 h-1(CO2浓度为15%)和103.4µmol g-1 h-1(CO2浓度为1%),两者的选择性均为100%。这种性能突出了非晶化如何稳定缺陷状态,使具有高Ce3+的非晶CeO2/GO成为二氧化碳光还原的有效材料,并解决了二氧化碳捕获和利用的关键挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信