Comprehensive Analysis of the Structural Evolution and Dynamic Mechanical Behavior of Ferrofluids through Coarse-Grained Molecular Dynamics and Experimental Testing

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Penghui Zhao, Ning Ma, Tianxiang Du, Xufeng Dong
{"title":"Comprehensive Analysis of the Structural Evolution and Dynamic Mechanical Behavior of Ferrofluids through Coarse-Grained Molecular Dynamics and Experimental Testing","authors":"Penghui Zhao, Ning Ma, Tianxiang Du, Xufeng Dong","doi":"10.1021/acs.langmuir.4c04390","DOIUrl":null,"url":null,"abstract":"Understanding and predicting the relationship between the dynamic structure and dynamic mechanical behavior of ferrofluids at the mesoscale presents a significant challenge. Therefore, in this study, a ferrofluid model that considered the molecular structure of the carrier liquid was constructed to perform coarse-grained molecular dynamics simulations of the mesoscale structural evolution and internal particle arrangement characteristics of ferrofluids under the influence of a magnetic field. Subsequently, oscillatory shear deformation was applied to further investigate the mechanical properties of ferrofluids under dynamic strain, as well as the deformation and disruption of their orientational structures. The simulations show that the columnar aggregation of magnetic particles imparts typical viscoelastic characteristics to the ferrofluid, and these aggregated structures gradually deform and break down as the strain amplitude increases. During dynamic oscillatory shear deformation, the enhancement of the magnetic field allows the aggregated structure of magnetic particles to exhibit better resistance to deformation, thereby improving the absorption and dissipation of mechanical energy. The dynamic mechanical properties of ferrofluids obtained from coarse-grained simulations closely align with the experimental results under moderate to high magnetic fields, allowing for a certain degree of predictive capability regarding the dynamic mechanical behavior of ferrofluids.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"30 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04390","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding and predicting the relationship between the dynamic structure and dynamic mechanical behavior of ferrofluids at the mesoscale presents a significant challenge. Therefore, in this study, a ferrofluid model that considered the molecular structure of the carrier liquid was constructed to perform coarse-grained molecular dynamics simulations of the mesoscale structural evolution and internal particle arrangement characteristics of ferrofluids under the influence of a magnetic field. Subsequently, oscillatory shear deformation was applied to further investigate the mechanical properties of ferrofluids under dynamic strain, as well as the deformation and disruption of their orientational structures. The simulations show that the columnar aggregation of magnetic particles imparts typical viscoelastic characteristics to the ferrofluid, and these aggregated structures gradually deform and break down as the strain amplitude increases. During dynamic oscillatory shear deformation, the enhancement of the magnetic field allows the aggregated structure of magnetic particles to exhibit better resistance to deformation, thereby improving the absorption and dissipation of mechanical energy. The dynamic mechanical properties of ferrofluids obtained from coarse-grained simulations closely align with the experimental results under moderate to high magnetic fields, allowing for a certain degree of predictive capability regarding the dynamic mechanical behavior of ferrofluids.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信