Jennifer Landino, Eileen Misterovich, Lotte van den Goor, Babli Adhikary, Shahana Chumki, Lance A. Davidson, Ann L. Miller
{"title":"Neighbor cells restrain furrowing during Xenopus epithelial cytokinesis","authors":"Jennifer Landino, Eileen Misterovich, Lotte van den Goor, Babli Adhikary, Shahana Chumki, Lance A. Davidson, Ann L. Miller","doi":"10.1016/j.devcel.2025.03.010","DOIUrl":null,"url":null,"abstract":"Cytokinesis challenges epithelial tissue homeostasis by generating forces that pull on neighboring cells. Junction reinforcement at the furrow in <em>Xenopus</em> epithelia regulates the speed of furrowing, suggesting that cytokinesis is subject to resistive forces from epithelial neighbors. We show that contractility factors accumulate near the furrow in neighboring cells, and increasing neighbor cell stiffness slows furrowing. Optogenetically increasing contractility in one or both neighbor cells slows furrowing or induces cytokinetic failure. Uncoupling mechanotransduction between dividing cells and their neighbors increases the furrow ingression rate, alters topological cell packing following cytokinesis, and impairs barrier function at the furrow. Computational modeling validates our findings and provides additional insights about epithelial mechanics during cytokinesis. We conclude that forces from the cytokinetic array must be carefully balanced with restraining forces generated by neighbor cells to regulate the speed and success of cytokinesis and maintain epithelial homeostasis.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"38 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2025.03.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cytokinesis challenges epithelial tissue homeostasis by generating forces that pull on neighboring cells. Junction reinforcement at the furrow in Xenopus epithelia regulates the speed of furrowing, suggesting that cytokinesis is subject to resistive forces from epithelial neighbors. We show that contractility factors accumulate near the furrow in neighboring cells, and increasing neighbor cell stiffness slows furrowing. Optogenetically increasing contractility in one or both neighbor cells slows furrowing or induces cytokinetic failure. Uncoupling mechanotransduction between dividing cells and their neighbors increases the furrow ingression rate, alters topological cell packing following cytokinesis, and impairs barrier function at the furrow. Computational modeling validates our findings and provides additional insights about epithelial mechanics during cytokinesis. We conclude that forces from the cytokinetic array must be carefully balanced with restraining forces generated by neighbor cells to regulate the speed and success of cytokinesis and maintain epithelial homeostasis.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.