Kaiyue Zhao, Ningyao Xiang, Yu-Qi Wang, Jinyu Ye, Zihan Jin, Linke Fu, Xiaoxia Chang, Dong Wang, Hai Xiao, Bingjun Xu
{"title":"A molecular design strategy to enhance hydrogen evolution on platinum electrocatalysts","authors":"Kaiyue Zhao, Ningyao Xiang, Yu-Qi Wang, Jinyu Ye, Zihan Jin, Linke Fu, Xiaoxia Chang, Dong Wang, Hai Xiao, Bingjun Xu","doi":"10.1038/s41560-025-01754-4","DOIUrl":null,"url":null,"abstract":"<p>Design of electrode–aqueous interfaces for hydrogen evolution reactions (HERs) is crucial to developing improved electrolysers. Modifications at the surface of electrodes have been employed to accelerate HER, but effective guiding principles are lacking. Here we establish a molecular design strategy to enhance HER activity in alkaline media by up to 50 times by introducing an organic overlayer on Pt electrodes. We find that enhancement of HER activity by organic adsorbates is correlated with their binding energies to Pt electrodes; binding energy could be tuned by changing the number of aromatic rings and hydrophilicity of the adsorbates. Density functional theory calculations suggest that the overlayer led to a decrease in the <i>d</i>-band centre, resulting in weakened H adsorption, which mitigated its overbinding on Pt. Importantly, we demonstrate the enhancing effect of the 2,2′-bipyrimidine overlayer on Pt/C in a water electrolyser with a membrane electrode assembly configuration, confirming its effectiveness on the device level.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"59 1","pages":""},"PeriodicalIF":49.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-025-01754-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Design of electrode–aqueous interfaces for hydrogen evolution reactions (HERs) is crucial to developing improved electrolysers. Modifications at the surface of electrodes have been employed to accelerate HER, but effective guiding principles are lacking. Here we establish a molecular design strategy to enhance HER activity in alkaline media by up to 50 times by introducing an organic overlayer on Pt electrodes. We find that enhancement of HER activity by organic adsorbates is correlated with their binding energies to Pt electrodes; binding energy could be tuned by changing the number of aromatic rings and hydrophilicity of the adsorbates. Density functional theory calculations suggest that the overlayer led to a decrease in the d-band centre, resulting in weakened H adsorption, which mitigated its overbinding on Pt. Importantly, we demonstrate the enhancing effect of the 2,2′-bipyrimidine overlayer on Pt/C in a water electrolyser with a membrane electrode assembly configuration, confirming its effectiveness on the device level.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.