Mao Zhang, Jie Chen, Minhan Cheng, Liping Zhang, Qichao Wen, Yong Wen, Hongju Zhou, Qiang Fu, Hua Deng
{"title":"Long-Term Serviceable Ionic Thermoelectric Hydrogel with Temperature and Moisture Dual-Driven Waste Energy Harvesting Capability","authors":"Mao Zhang, Jie Chen, Minhan Cheng, Liping Zhang, Qichao Wen, Yong Wen, Hongju Zhou, Qiang Fu, Hua Deng","doi":"10.1002/smll.202501960","DOIUrl":null,"url":null,"abstract":"Despite the substantial progress in developing high-performance quasi-solid hydrogels based on ionic thermophoretic migration, ionic thermoelectric materials (i-TEs) show unsatisfactory long-lasting stability caused by ionic migration failures and de-electrolytes. In this work, by enriching oxygen-containing functional groups in the gel network and constructing oriented ionic transport nanochannels, an innovative approach is presented to reach long-term service and reusability for i-TEs without sacrificing their TE properties. The as-prepared hydrogel with thermopower of 17.0 ± 1.0 mV K<sup>−1</sup> stables at 82% of its original performance when immersed in the electrolyte. Notably, even after being air-dried for 135 days, its thermopower returns to 87% of the original value through replenishing electrolyte solution and its 3D shape fully recovers. Meanwhile, the dual-driven nature for moisture and temperature as well as the pH sensitivity of this network is systematically investigated. The maximum output voltage of a single sample reaches 0.215 V at a Δ<i>T</i> of 3.7 K, and it works continuously for more than 26 h. This study offers a new approach to overcoming the short-term service bottleneck of i-TEs and provides a practical scheme for the multi-source drive of self-powered TE equipment.","PeriodicalId":228,"journal":{"name":"Small","volume":"34 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202501960","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the substantial progress in developing high-performance quasi-solid hydrogels based on ionic thermophoretic migration, ionic thermoelectric materials (i-TEs) show unsatisfactory long-lasting stability caused by ionic migration failures and de-electrolytes. In this work, by enriching oxygen-containing functional groups in the gel network and constructing oriented ionic transport nanochannels, an innovative approach is presented to reach long-term service and reusability for i-TEs without sacrificing their TE properties. The as-prepared hydrogel with thermopower of 17.0 ± 1.0 mV K−1 stables at 82% of its original performance when immersed in the electrolyte. Notably, even after being air-dried for 135 days, its thermopower returns to 87% of the original value through replenishing electrolyte solution and its 3D shape fully recovers. Meanwhile, the dual-driven nature for moisture and temperature as well as the pH sensitivity of this network is systematically investigated. The maximum output voltage of a single sample reaches 0.215 V at a ΔT of 3.7 K, and it works continuously for more than 26 h. This study offers a new approach to overcoming the short-term service bottleneck of i-TEs and provides a practical scheme for the multi-source drive of self-powered TE equipment.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.