Alternative Solid-State Synthesis Route for Highly Fluorinated Disordered Rock-Salt Cathode Materials for High-Energy Lithium-Ion Batteries

IF 26 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Venkata Sai Avvaru, Tianyu Li, Gi-Hyeok Lee, Young-Woon Byeon, Krishna Prasad Koirala, Otavio Jovino Marques, Bernardine L. D. Rinkel, Yanbao Fu, David Milsted, Seonghun Jeong, Nathan J. Szymanski, Martin Kunz, Finn Babbe, Eunryeol Lee, Vincent Battaglia, Bryan D. McCloskey, Johanna Nelson Weker, Chongmin Wang, Wanli Yang, Raphaële J. Clément, Haegyeom Kim
{"title":"Alternative Solid-State Synthesis Route for Highly Fluorinated Disordered Rock-Salt Cathode Materials for High-Energy Lithium-Ion Batteries","authors":"Venkata Sai Avvaru,&nbsp;Tianyu Li,&nbsp;Gi-Hyeok Lee,&nbsp;Young-Woon Byeon,&nbsp;Krishna Prasad Koirala,&nbsp;Otavio Jovino Marques,&nbsp;Bernardine L. D. Rinkel,&nbsp;Yanbao Fu,&nbsp;David Milsted,&nbsp;Seonghun Jeong,&nbsp;Nathan J. Szymanski,&nbsp;Martin Kunz,&nbsp;Finn Babbe,&nbsp;Eunryeol Lee,&nbsp;Vincent Battaglia,&nbsp;Bryan D. McCloskey,&nbsp;Johanna Nelson Weker,&nbsp;Chongmin Wang,&nbsp;Wanli Yang,&nbsp;Raphaële J. Clément,&nbsp;Haegyeom Kim","doi":"10.1002/aenm.202500492","DOIUrl":null,"url":null,"abstract":"<p>Fluorination has been identified as a key element for enabling the stable cycling of earth-abundant manganese-based disordered rock salt (DRX) cathodes. However, fluorination in the DRX bulk remains a challenge for scalable solid-state synthesis. In this study, a tailored reaction pathway is proposed to synthesize a highly fluorinated DRX. It is demonstrated for the first time that the unconventional precursors, Li<sub>6</sub>MnO<sub>4</sub>, MnF<sub>2</sub>, and TiO<sub>2</sub>, can avoid the formation of Mn-based intermediates (such as Li<sub>2</sub>(Mn,Ti)O<sub>3,</sub> LiMnO<sub>2</sub>, and Mn<sub>3</sub>O<sub>4</sub>), which, once formed, persist until the synthesis temperature reaches close to or above that required for fluorine volatility. Therefore, this method can form a highly fluorinated DRX with a composition of Li<sub>1.23</sub>Mn<sub>0.40</sub>Ti<sub>0.37</sub>O<sub>2−y</sub>F<sub>y</sub> (<i>y</i> = 0.29–0.34) at a low temperature (800 °C) relative to that required for conventional DRX solid-state reactions (≥900 °C). Li<sub>1.23</sub>Mn<sub>0.40</sub>Ti<sub>0.37</sub>O<sub>2−y</sub>F<sub>y</sub> (<i>y</i> = 0.29–0.34) delivers a specific capacity above 300 mAh g<sup>−1</sup> and a specific energy of 980 Wh kg<sup>−1</sup> at 30 °C. Detailed characterization reveals that this DRX phase reversibly utilizes Mn<sup>2+/3+</sup> redox in the low-voltage region and Mn<sup>3+/4+</sup> redox in the middle-voltage range, whereas reversible oxygen redox is observed at high potentials.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"15 28","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.202500492","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202500492","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorination has been identified as a key element for enabling the stable cycling of earth-abundant manganese-based disordered rock salt (DRX) cathodes. However, fluorination in the DRX bulk remains a challenge for scalable solid-state synthesis. In this study, a tailored reaction pathway is proposed to synthesize a highly fluorinated DRX. It is demonstrated for the first time that the unconventional precursors, Li6MnO4, MnF2, and TiO2, can avoid the formation of Mn-based intermediates (such as Li2(Mn,Ti)O3, LiMnO2, and Mn3O4), which, once formed, persist until the synthesis temperature reaches close to or above that required for fluorine volatility. Therefore, this method can form a highly fluorinated DRX with a composition of Li1.23Mn0.40Ti0.37O2−yFy (y = 0.29–0.34) at a low temperature (800 °C) relative to that required for conventional DRX solid-state reactions (≥900 °C). Li1.23Mn0.40Ti0.37O2−yFy (y = 0.29–0.34) delivers a specific capacity above 300 mAh g−1 and a specific energy of 980 Wh kg−1 at 30 °C. Detailed characterization reveals that this DRX phase reversibly utilizes Mn2+/3+ redox in the low-voltage region and Mn3+/4+ redox in the middle-voltage range, whereas reversible oxygen redox is observed at high potentials.

Abstract Image

Abstract Image

高能锂离子电池高氟无序岩盐正极材料的替代固态合成路线
氟化已被确定为使地球上丰富的锰基无序岩盐(DRX)阴极能够稳定循环的关键因素。然而,DRX体中的氟化仍然是可扩展固态合成的一个挑战。在本研究中,提出了一种定制的反应途径来合成高氟化DRX。该研究首次证明,非常规前驱体Li6MnO4、MnF2和TiO2可以避免锰基中间体(如Li2(Mn,Ti)O3、LiMnO2和Mn3O4)的形成,这些中间体一旦形成,就会持续存在,直到合成温度接近或高于氟挥发性所需的温度。因此,相对于传统的DRX固相反应(≥900℃),该方法可以在较低的温度(800℃)下形成组成为Li1.23Mn0.40Ti0.37O2−yFy (y = 0.29-0.34)的高氟化DRX。Li1.23Mn0.40Ti0.37O2−yFy (y = 0.29-0.34)在30°C时的比容量超过300 mAh g−1,比能量为980 Wh kg−1。详细的表征表明,该DRX相在低压区域可逆地利用Mn2+/3+氧化还原,在中压范围内利用Mn3+/4+氧化还原,而在高电位下观察到可逆的氧氧化还原。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信