Mengting Jiang, Youwei Xu, Xiaodong Luan, Kai Wu, Zhen Li, H. Eric Xu, Shuyang Zhang, Yi Jiang, Wanchao Yin
{"title":"Structural basis of the cysteinyl leukotriene receptor type 2 activation by LTD4","authors":"Mengting Jiang, Youwei Xu, Xiaodong Luan, Kai Wu, Zhen Li, H. Eric Xu, Shuyang Zhang, Yi Jiang, Wanchao Yin","doi":"10.1073/pnas.2417148122","DOIUrl":null,"url":null,"abstract":"The G protein–coupled cysteinyl leukotriene receptor CysLT2R plays intricate roles in the physiology and pathogenesis of inflammation-related processes. It has garnered increasing attention as a potential therapeutic target for atopic asthma, brain injury, central nervous system disorders, and various types of cancer. In this study, we present the cryo-electron microscopy structure of the cysteinyl leukotriene D4 (LTD4)-bound human CysLT2R in complex with a Gα <jats:sub>q</jats:sub> protein, adopting an active conformation at a resolution of 3.15 Å. The structure elucidates a spacious polar pocket designed to accommodate the two branched negative ends of LTD4 and reveals a lateral ligand access route into the orthosteric pocket located on transmembrane domain helix (TM) 4 and 5. Furthermore, our findings highlight the crucial role of transmembrane domain helix 3 in sensing agonist moieties, representing the pivotal mechanism of receptor activation for both CysLT1R and CysLT2R. Collectively, the insights derived from our structural investigation establish a foundation for comprehending CysLT2R activation by its endogenous ligand LTD4, offering a rational basis for the design of drugs targeting CysLT2R.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"27 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2417148122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The G protein–coupled cysteinyl leukotriene receptor CysLT2R plays intricate roles in the physiology and pathogenesis of inflammation-related processes. It has garnered increasing attention as a potential therapeutic target for atopic asthma, brain injury, central nervous system disorders, and various types of cancer. In this study, we present the cryo-electron microscopy structure of the cysteinyl leukotriene D4 (LTD4)-bound human CysLT2R in complex with a Gα q protein, adopting an active conformation at a resolution of 3.15 Å. The structure elucidates a spacious polar pocket designed to accommodate the two branched negative ends of LTD4 and reveals a lateral ligand access route into the orthosteric pocket located on transmembrane domain helix (TM) 4 and 5. Furthermore, our findings highlight the crucial role of transmembrane domain helix 3 in sensing agonist moieties, representing the pivotal mechanism of receptor activation for both CysLT1R and CysLT2R. Collectively, the insights derived from our structural investigation establish a foundation for comprehending CysLT2R activation by its endogenous ligand LTD4, offering a rational basis for the design of drugs targeting CysLT2R.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.