{"title":"Intestinal secretory differentiation reflects niche-driven phenotypic and epigenetic plasticity of a common signal-responsive terminal cell","authors":"Swarnabh Bhattacharya, Guodong Tie, Pratik N.P. Singh, Ermanno Malagola, Onur Eskiocak, Ruiyang He, Judith Kraiczy, Wei Gu, Yakov Perlov, Aybuke Alici-Garipcan, Semir Beyaz, Timothy C. Wang, Qiao Zhou, Ramesh A. Shivdasani","doi":"10.1016/j.stem.2025.03.005","DOIUrl":null,"url":null,"abstract":"Enterocytes and four classic secretory cell types derive from intestinal epithelial stem cells. Based on morphology, location, and canonical markers, goblet and Paneth cells are considered distinct secretory types. Here, we report high overlap in their transcripts and sites of accessible chromatin, in marked contrast to those of their enteroendocrine or tuft cell siblings. Mouse and human goblet and Paneth cells express extraordinary fractions of few antimicrobial genes, which reflect specific responses to local niches. Wnt signaling retains some ATOH1<sup>+</sup> secretory cells in crypt bottoms, where the absence of BMP signaling potently induces Paneth features. Cells that migrate away from crypt bottoms encounter BMPs and thereby acquire goblet properties. These phenotypes and underlying accessible <em>cis</em>-elements interconvert in post-mitotic cells. Thus, goblet and Paneth properties represent alternative phenotypic manifestations of a common signal-responsive terminal cell type. These findings reveal exquisite niche-dependent cell plasticity and <em>cis</em>-regulatory dynamics in likely response to antimicrobial needs.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"59 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2025.03.005","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Enterocytes and four classic secretory cell types derive from intestinal epithelial stem cells. Based on morphology, location, and canonical markers, goblet and Paneth cells are considered distinct secretory types. Here, we report high overlap in their transcripts and sites of accessible chromatin, in marked contrast to those of their enteroendocrine or tuft cell siblings. Mouse and human goblet and Paneth cells express extraordinary fractions of few antimicrobial genes, which reflect specific responses to local niches. Wnt signaling retains some ATOH1+ secretory cells in crypt bottoms, where the absence of BMP signaling potently induces Paneth features. Cells that migrate away from crypt bottoms encounter BMPs and thereby acquire goblet properties. These phenotypes and underlying accessible cis-elements interconvert in post-mitotic cells. Thus, goblet and Paneth properties represent alternative phenotypic manifestations of a common signal-responsive terminal cell type. These findings reveal exquisite niche-dependent cell plasticity and cis-regulatory dynamics in likely response to antimicrobial needs.
期刊介绍:
Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.