Multifaceted nature of defect tolerance in halide perovskites and emerging semiconductors

IF 38.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Irea Mosquera-Lois, Yi-Teng Huang, Hugh Lohan, Junzhi Ye, Aron Walsh, Robert L. Z. Hoye
{"title":"Multifaceted nature of defect tolerance in halide perovskites and emerging semiconductors","authors":"Irea Mosquera-Lois, Yi-Teng Huang, Hugh Lohan, Junzhi Ye, Aron Walsh, Robert L. Z. Hoye","doi":"10.1038/s41570-025-00702-w","DOIUrl":null,"url":null,"abstract":"<p>Lead halide perovskites (LHPs) have shot to prominence as efficient energy-conversion materials that can be processed using cost-effective fabrication methods. A reason for their exceptional performance is their crystallographic defect tolerance, enabling long charge-carrier lifetimes despite high defect densities. Achieving defect tolerance in broader classes of materials would impact on the semiconductor industry substantially. Considerable efforts have been made to understand the origins of defect tolerance, so as to design stable and nontoxic alternatives to LHPs. However, understanding defect tolerance in LHPs is far from straightforward. This Review discusses the models proposed for defect tolerance in halide perovskites, evaluating the experimental and theoretical support for these models, as well as their limitations. We also cover attempts to apply these models to identify materials beyond LHPs that could exhibit defect tolerance. Finally, we discuss the experimental methods used to understand defects in mixed ionic–electronic conductors, as well as the important information that is necessary for a deeper understanding, in order to develop improved models that enable the design of defect-tolerant semiconductors.</p><figure></figure>","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"90 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews. Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41570-025-00702-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lead halide perovskites (LHPs) have shot to prominence as efficient energy-conversion materials that can be processed using cost-effective fabrication methods. A reason for their exceptional performance is their crystallographic defect tolerance, enabling long charge-carrier lifetimes despite high defect densities. Achieving defect tolerance in broader classes of materials would impact on the semiconductor industry substantially. Considerable efforts have been made to understand the origins of defect tolerance, so as to design stable and nontoxic alternatives to LHPs. However, understanding defect tolerance in LHPs is far from straightforward. This Review discusses the models proposed for defect tolerance in halide perovskites, evaluating the experimental and theoretical support for these models, as well as their limitations. We also cover attempts to apply these models to identify materials beyond LHPs that could exhibit defect tolerance. Finally, we discuss the experimental methods used to understand defects in mixed ionic–electronic conductors, as well as the important information that is necessary for a deeper understanding, in order to develop improved models that enable the design of defect-tolerant semiconductors.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature reviews. Chemistry
Nature reviews. Chemistry Chemical Engineering-General Chemical Engineering
CiteScore
52.80
自引率
0.80%
发文量
88
期刊介绍: Nature Reviews Chemistry is an online-only journal that publishes Reviews, Perspectives, and Comments on various disciplines within chemistry. The Reviews aim to offer balanced and objective analyses of selected topics, providing clear descriptions of relevant scientific literature. The content is designed to be accessible to recent graduates in any chemistry-related discipline while also offering insights for principal investigators and industry-based research scientists. Additionally, Reviews should provide the authors' perspectives on future directions and opinions regarding the major challenges faced by researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信