The differential effect of SARS-CoV-2 NSP1 on mRNA translation and stability reveals new insights linking ribosome recruitment, codon usage, and virus evolution

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Juan José Berlanga, Tania Matamoros, Miguel Rodríguez Pulido, Margarita Sáiz, Mercedes Núñez Bayón, René Toribio, Iván Ventoso
{"title":"The differential effect of SARS-CoV-2 NSP1 on mRNA translation and stability reveals new insights linking ribosome recruitment, codon usage, and virus evolution","authors":"Juan José Berlanga, Tania Matamoros, Miguel Rodríguez Pulido, Margarita Sáiz, Mercedes Núñez Bayón, René Toribio, Iván Ventoso","doi":"10.1093/nar/gkaf261","DOIUrl":null,"url":null,"abstract":"The nonstructural protein 1 (NSP1) of SARS-CoV-2 blocks the messenger RNA (mRNA) entry channel of the 40S ribosomal subunit, causing inhibition of translation initiation and subsequent degradation of host mRNAs. However, target mRNA specificity and how viral mRNAs escape NSP1-mediated degradation have not been clarified to date. Here we found that NSP1 acts as a translational switch capable of blocking or enhancing translation depending on how preinitiation complex, 43S-PIC, is recruited to the mRNA, whereas NSP1-mediated mRNA degradation mostly depends on codon usage bias. Thus, fast-translating mRNAs with optimal codon usage for human cells that preferentially recruit 43S-PIC by threading showed a dramatic sensitivity to NSP1. Translation of SARS-CoV-2 mRNAs escapes NSP1-mediated inhibition by a proper combination of suboptimal codon usage and slotting-prone 5′ UTR. Thus, the prevalence of nonoptimal codons found in SARS-CoV-2 and other coronavirus genomes is favored by the distinctive effect that NSP1 plays on translation and mRNA stability.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"26 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf261","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The nonstructural protein 1 (NSP1) of SARS-CoV-2 blocks the messenger RNA (mRNA) entry channel of the 40S ribosomal subunit, causing inhibition of translation initiation and subsequent degradation of host mRNAs. However, target mRNA specificity and how viral mRNAs escape NSP1-mediated degradation have not been clarified to date. Here we found that NSP1 acts as a translational switch capable of blocking or enhancing translation depending on how preinitiation complex, 43S-PIC, is recruited to the mRNA, whereas NSP1-mediated mRNA degradation mostly depends on codon usage bias. Thus, fast-translating mRNAs with optimal codon usage for human cells that preferentially recruit 43S-PIC by threading showed a dramatic sensitivity to NSP1. Translation of SARS-CoV-2 mRNAs escapes NSP1-mediated inhibition by a proper combination of suboptimal codon usage and slotting-prone 5′ UTR. Thus, the prevalence of nonoptimal codons found in SARS-CoV-2 and other coronavirus genomes is favored by the distinctive effect that NSP1 plays on translation and mRNA stability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信