Rachel R Cueny, Andrew F Voter, Aidan M McKenzie, Marcel Morgenstern, Kevin S Myers, Michael M Place, Jason M Peters, Joshua J Coon, James L Keck
{"title":"Altering translation allows E. coli to overcome G-quadruplex stabilizers","authors":"Rachel R Cueny, Andrew F Voter, Aidan M McKenzie, Marcel Morgenstern, Kevin S Myers, Michael M Place, Jason M Peters, Joshua J Coon, James L Keck","doi":"10.1093/nar/gkaf264","DOIUrl":null,"url":null,"abstract":"G-quadruplex (G4) structures can form in guanine-rich DNA or RNA and have been found to modulate cellular processes, including replication, transcription, and translation. Many studies on the cellular roles of G4s have focused on eukaryotic systems, with far fewer probing bacterial G4s. Using a chemical-genetic approach, we identified genes in Escherichia coli that are important for growth in G4-stabilizing conditions. Reducing levels of translation elongation factor Tu or slowing translation initiation or elongation with kasugamycin, chloramphenicol, or spectinomycin suppress the effects of G4-stabilizing compounds. In contrast, reducing the expression of specific translation termination or ribosome recycling proteins is detrimental to growth in G4-stabilizing conditions. Proteomic and transcriptomic analyses reveal decreased protein and transcript levels, respectively, for ribosome assembly factors and proteins associated with translation in the presence of G4 stabilizer. Our results support a model in which reducing the rate of translation by altering translation initiation, translation elongation, or ribosome assembly can compensate for G4-related stress in E. coli.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"24 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf264","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
G-quadruplex (G4) structures can form in guanine-rich DNA or RNA and have been found to modulate cellular processes, including replication, transcription, and translation. Many studies on the cellular roles of G4s have focused on eukaryotic systems, with far fewer probing bacterial G4s. Using a chemical-genetic approach, we identified genes in Escherichia coli that are important for growth in G4-stabilizing conditions. Reducing levels of translation elongation factor Tu or slowing translation initiation or elongation with kasugamycin, chloramphenicol, or spectinomycin suppress the effects of G4-stabilizing compounds. In contrast, reducing the expression of specific translation termination or ribosome recycling proteins is detrimental to growth in G4-stabilizing conditions. Proteomic and transcriptomic analyses reveal decreased protein and transcript levels, respectively, for ribosome assembly factors and proteins associated with translation in the presence of G4 stabilizer. Our results support a model in which reducing the rate of translation by altering translation initiation, translation elongation, or ribosome assembly can compensate for G4-related stress in E. coli.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.