Kino Sakai , Tomoko Narazaki , Masanori Mori , Tomomi Matsumoto , Kagari Aoki , Andreas Fahlman , Kentaro Q. Sakamoto
{"title":"Respiratory flow and tidal volume scale with body mass in sea turtles but not breath duration","authors":"Kino Sakai , Tomoko Narazaki , Masanori Mori , Tomomi Matsumoto , Kagari Aoki , Andreas Fahlman , Kentaro Q. Sakamoto","doi":"10.1016/j.cbpa.2025.111855","DOIUrl":null,"url":null,"abstract":"<div><div>The ventilatory capacity of sea turtles is an important factor in their diving ability because they spend most of their time submerged. However, there is limited information on the relationship between the ventilatory capacity and body mass of sea turtles. To investigate the allometric scaling of the functional ventilatory capacity, we measured respiratory flow, tidal volume, and breath duration of spontaneous breaths in 40 sea turtles from 3 species (loggerhead, <em>Caretta caretta</em>; green, <em>Chelonia mydas</em>; hawksbill, <em>Eretmochelys imbricata</em>) of various body sizes (range: 0.7–120.6 kg) on land and in water. The results showed that the ventilatory capacity did not differ on land or in water. The respiratory flow and tidal volume increased with body mass with an allometric exponent of 0.76–0.80 and 0.87–0.89, respectively. In contrast, the breath duration and the ratio of tidal volume to the maximum lung volume were constant. These results suggest that sea turtles increase respiratory flow by increasing tidal volume with increasing body mass rather than prolonging breath duration, which may allow them to reduce the surface interval to breathe. This study improves the understanding of the ventilatory capacity of sea turtles.</div></div>","PeriodicalId":55237,"journal":{"name":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","volume":"305 ","pages":"Article 111855"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1095643325000534","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ventilatory capacity of sea turtles is an important factor in their diving ability because they spend most of their time submerged. However, there is limited information on the relationship between the ventilatory capacity and body mass of sea turtles. To investigate the allometric scaling of the functional ventilatory capacity, we measured respiratory flow, tidal volume, and breath duration of spontaneous breaths in 40 sea turtles from 3 species (loggerhead, Caretta caretta; green, Chelonia mydas; hawksbill, Eretmochelys imbricata) of various body sizes (range: 0.7–120.6 kg) on land and in water. The results showed that the ventilatory capacity did not differ on land or in water. The respiratory flow and tidal volume increased with body mass with an allometric exponent of 0.76–0.80 and 0.87–0.89, respectively. In contrast, the breath duration and the ratio of tidal volume to the maximum lung volume were constant. These results suggest that sea turtles increase respiratory flow by increasing tidal volume with increasing body mass rather than prolonging breath duration, which may allow them to reduce the surface interval to breathe. This study improves the understanding of the ventilatory capacity of sea turtles.
期刊介绍:
Part A: Molecular & Integrative Physiology of Comparative Biochemistry and Physiology. This journal covers molecular, cellular, integrative, and ecological physiology. Topics include bioenergetics, circulation, development, excretion, ion regulation, endocrinology, neurobiology, nutrition, respiration, and thermal biology. Study on regulatory mechanisms at any level of organization such as signal transduction and cellular interaction and control of behavior are also published.